scholarly journals Long non-coding RNA SPRY4-IT1 promotes epithelial–mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis

2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Ming-Jun Fan ◽  
Yong-Hui Zou ◽  
Peng-Juan He ◽  
Shuai Zhang ◽  
Xiao-Mei Sun ◽  
...  

AbstractBackground: Emerging evidences have indicated that long non-coding RNAs (LncRNAs) play vital roles in cancer development and progression. Previous studies have suggested that overexpression of SPRY4 intronic transcript 1 (SPRY4-IT1) predicates poor prognosis and promotes tumor progress in cervical cancer (CC). However, the underlying mechanism of SPRY4-IT1 in CC remains unknown. The aim of the present study is to evaluate the function and mechanism of SPRY4-IT1 in CC.Methods: SPRY4-IT1 was detected by quantitative PCR. Wound-healing assay and Transwell assay were performed to detect cell migration and invasion, respectively. Western blotting assays were used to analyze the protein expression of E-cadherin, N-cadherin and vimentin. Tumor xenografts experiments were performed to detect the effect of SPRY4-IT1 in vivo. Dual luciferase reporter assay was used to investigate potential molecular mechanism of SPRY4-IT1 in CC cells.Results: SPRY4-IT1 was up-regulated in CC cell lines. Knockdown of SPRY4-IT1 significantly inhibited CC cells migration and invasion in vitro and in vivo. Moreover, knockdown of SPRY4-IT1 significantly suppressed the epithelial–mesenchymal transition (EMT) of CC by increased E-cadherin expression and decreased the N-cadherin and vimentin expression. Mechanically, SPRY4-IT1 could directly bind to miR-101-3p and effectively act as a competing endogenous RNA (ceRNA) for miR-101-3p to regulate the expression of the target gene ZEB1.Conclusions: Our findings indicate that the SPYR4-IT1/miR-101-3p/ZEB1 axis contributes to CC migration and invasion, which may provide novel insights into the function of lncRNA-driven tumorigenesis of CC.

2022 ◽  
Vol 12 (4) ◽  
pp. 820-826
Author(s):  
Chengyong Wu ◽  
Weifeng Wei ◽  
Jing Li ◽  
Shenglin Peng

Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear. The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.


Author(s):  
Feng Jiang ◽  
Yan Shi ◽  
Hong Lu ◽  
Guojun Li

Armadillo repeat-containing protein 8 (ARMC8) plays an important role in regulating cell migration, proliferation, tissue maintenance, signal transduction, and tumorigenesis. However, the expression pattern and role of ARMC8 in osteosarcoma are still unclear. In this study, our aims were to examine the effects of ARMC8 on osteosarcoma and to explore its underlying mechanism. Our results demonstrated that ARMC8 was overexpressed in osteosarcoma cell lines. Knockdown of ARMC8 significantly inhibited osteosarcoma cell proliferation in vitro and markedly inhibited xenograft tumor growth in vivo. ARMC8 silencing also suppressed the epithelial‐mesenchymal transition (EMT) phenotype, as well as inhibited the migration and invasion of osteosarcoma cells. Furthermore, knockdown of ARMC8 obviously inhibited the expression of β-catenin, c-Myc, and cyclin D1 in MG-63 cells. In conclusion, this report demonstrates that ARMC8 silencing inhibits proliferation and invasion of osteosarcoma cells. Therefore, ARMC8 may play an important role in the development and progression of human osteosarcoma and may represent a novel therapeutic target in the treatment of osteosarcoma.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.


2020 ◽  
Vol 43 (6) ◽  
pp. 1017-1033 ◽  
Author(s):  
Yizhi Xiao ◽  
Side Liu ◽  
Jiaying Li ◽  
Weiyu Dai ◽  
Weimei Tang ◽  
...  

Abstract Purpose Growing evidence indicates that aberrant expression of microRNAs contributes to tumor development. However, the biological role of microRNA-4490 (miR-4490) in gastric cancer (GC) remains to be clarified. Methods To explore the function of miR-4490 in GC, we performed colony formation, EdU incorporation, qRT-PCR, Western blotting, in situ hybridization (ISH), immunohistochemistry (IHC), flow cytometry, ChIP and dual-luciferase reporter assays. In addition, the growth, migration and invasion capacities of GC cells were evaluated. Results We found that miR-4490 was significantly downregulated in primary GC samples and in GC-derived cell lines compared with normal controls, and that this expression level was negatively correlated with GC malignancy. Exogenous miR-4490 expression not only reduced cell cycle progression and proliferation, but also significantly inhibited GC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, we found that miR-4490 directly targets USP22, which mediates inhibition of GC cell proliferation and EMT-induced metastasis in vitro and in vivo. Moreover, we found through luciferase and ChIP assays that transcription factor POU2F1 can directly bind to POU2F1 binding sites within the miR-4490 and USP22 promoters and, by doing so, modulate their transcription. Spearman’s correlation analysis revealed a positive correlation between USP22 and POU2F1 expression and negative correlations between miR-4490 and USP22 as well as miR-4490 and POU2F1 expression in primary GC tissues. Conclusion Based on our results we conclude that miR-4490 acts as a tumor suppressor, and that the POU2F1/miR-4490/USP22 axis plays an important role in the regulation of growth, invasion and EMT of GC cells.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


Author(s):  
Waraporn Saentaweesuk ◽  
Norie Araki ◽  
Kulthida Vaeteewoottacharn ◽  
Atit Silsirivanit ◽  
Wunchana Seubwai ◽  
...  

Cholangiocarcinoma (CCA) is a highly metastatic tumor, and the majority of patients with CCA have a short survival time because there are no available effective treatments. Hence, a better understanding regarding CCA metastasis may provide an opportunity to improve the strategies for treatment. A comparison study between the highly metastatic cells and their parental cells is an approach to uncover the molecular mechanisms underlying the metastatic process. In the present study, a lung metastatic CCA cell line, KKU-214L5, was established by the in vivo selection of the tail vein-injected mouse model. KKU-214L5 cells possessed mesenchymal spindle-like morphology with higher migration and invasion abilities in vitro than the parental cells (KKU-214). KKU-214L5 also exhibited extremely aggressive lung colonization in the tail vein-injected metastatic model. Epithelial‐mesenchymal transition (EMT) was clearly observed in KKU-214L5 cells. Significant downregulation of epithelial markers (ZO-1 and claudin-1), with unique upregulation of E-cadherin and mesenchymal markers (vimentin, β-catenin, and slug), was observed in KKU-214L5. Increasing MMP-2 and MMP-9 activities and CD147 expression reflected the high invasion activity in KKU-214L5 cells. Suppression of vimentin using siRNA significantly decreased the migration and invasion capabilities of KKU-214L5 to almost the basal levels of the parental cells without any change on the expression levels of other EMT markers and the activities of MMPs. These results suggest that vimentin activation is essential to potentiate the metastatic characters of CCA cells, and suppression of vimentin expression could be a potential strategy to improve the treatment of CCA, a highly metastatic cancer.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Bin Dai ◽  
Guanghua Zhou ◽  
Zhiqiang Hu ◽  
Guangtong Zhu ◽  
Beibei Mao ◽  
...  

AbstractEpithelial–mesenchymal transition (EMT) plays a pivotal role in cancer progression. Hsa-miR-205 is considered one of the fundamental regulators of EMT. In the present study, we found that miR-205 was down-regulated in glioma tissues and human glioma cells U87 and U251. Meanwhile, miR-205 overexpression enhanced E-cadherin, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, miR-205 suppressed tumor growth. Additionally, HOXD9 was confirmed as a direct target of miR-205. Suppression of HOXD9 by miR-205 was demonstrated by luciferase reporter assay, quantitative real time-PCR analysis, and western blot. Moreover, we observed a negative correlation between miR-205 and HOXD9 in human glioma tissues. In summary, our findings demonstrated that miR-205 suppresses glioma tumor growth, invasion, and reverses EMT through down-regulating its target HOXD9.


2016 ◽  
Vol 39 (2) ◽  
pp. 501-510 ◽  
Author(s):  
Xiaoyan Ying ◽  
Kuang Wei ◽  
Zhe Lin ◽  
Yugui Cui ◽  
Jie Ding ◽  
...  

Background/Aims: MicroRNA-125b (miR-125b) is overexpressed in several types of cancer and contributes to chemotherapy resistance. However, its role in epithelial ovarian carcinoma remains unknown. The goal of this study was to identify the relationship between miR-125b and the epithelial-mesenchymal transition (EMT) in ovarian cancer. Methods: In total, 55patients with epithelial ovarian cancer (EOC) were included in our study. The relative expression of miR-125b was measured using real-time polymerase chain reaction (RT-PCR).The protein expression of SET and EMT-related indicators in cell lines were assessed by Western blot. The regulation of SET by miR-125b was confirmed using luciferase reporter assays. The effect of miR-125b on metastasis was evaluated using an in vivo metastasis model. Results: miR-125b expression was markedly lower in the EOC specimens. Ectopic expression of miR-125b in EOC cells significantly inhibited tumor invasion.miR-125b expression was negatively associated with both EMT and SET expression, in vivo and in vitro. Mechanistic studies identified SET as a direct target of miR-125b, and the downregulation of SET, observed during tumor migration, was affected by the overexpression of miR125b. Conclusion: miR-125b suppresses EOC cell migration and invasion by targeting the SET protein, and this study may provide a novel mechanism for understanding the progression of EOC.


Sign in / Sign up

Export Citation Format

Share Document