scholarly journals miR-125b Promotes Colorectal Cancer Migration and Invasion by Dual-Targeting CFTR and CGN

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


2020 ◽  
Vol 43 (6) ◽  
pp. 1017-1033 ◽  
Author(s):  
Yizhi Xiao ◽  
Side Liu ◽  
Jiaying Li ◽  
Weiyu Dai ◽  
Weimei Tang ◽  
...  

Abstract Purpose Growing evidence indicates that aberrant expression of microRNAs contributes to tumor development. However, the biological role of microRNA-4490 (miR-4490) in gastric cancer (GC) remains to be clarified. Methods To explore the function of miR-4490 in GC, we performed colony formation, EdU incorporation, qRT-PCR, Western blotting, in situ hybridization (ISH), immunohistochemistry (IHC), flow cytometry, ChIP and dual-luciferase reporter assays. In addition, the growth, migration and invasion capacities of GC cells were evaluated. Results We found that miR-4490 was significantly downregulated in primary GC samples and in GC-derived cell lines compared with normal controls, and that this expression level was negatively correlated with GC malignancy. Exogenous miR-4490 expression not only reduced cell cycle progression and proliferation, but also significantly inhibited GC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, we found that miR-4490 directly targets USP22, which mediates inhibition of GC cell proliferation and EMT-induced metastasis in vitro and in vivo. Moreover, we found through luciferase and ChIP assays that transcription factor POU2F1 can directly bind to POU2F1 binding sites within the miR-4490 and USP22 promoters and, by doing so, modulate their transcription. Spearman’s correlation analysis revealed a positive correlation between USP22 and POU2F1 expression and negative correlations between miR-4490 and USP22 as well as miR-4490 and POU2F1 expression in primary GC tissues. Conclusion Based on our results we conclude that miR-4490 acts as a tumor suppressor, and that the POU2F1/miR-4490/USP22 axis plays an important role in the regulation of growth, invasion and EMT of GC cells.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


2020 ◽  
Author(s):  
Junyi Ren ◽  
Xiaopeng Wang ◽  
Gang Wei ◽  
Yajing Meng

Abstract Background: Due to high potency and low toxicity, desflurane has been wildly used during surgery. Recent evidence that the use of desflurane was associated with colorectal cancer (CRC) tumor metastasis and poor prognosis raising concerns about the safety of desflurane. However, the mechanism was uncovered.Methods: CRC cells were exposed to desflurane, the changes in morphology and epithelial-mesenchymal transition (EMT)-related genes were evaluated. Transwell assay was used to study the migration and invasion effect. Xenograft was performed to study the tumor formation ability of desflurane-treated cells in vivo. Dual luciferase reporter assay was conducted to verify the target of miR-34a. Knockdown or overexpression of LOXL3 was used to investigate the mechanism of desflurane-induced EMT. The association of LOXL3 with CRC molecular subtypes and clinical relevance was studied by analysis of public datasets. Results: Exposure to desflurane induced EMT, migration, and invasion in CRC cells. Mice injected with desflurane-treated cells formed more tumors in the lungs. Downregulation of miR-34a and upregulation of LOXL3 were required for desflurane-induced EMT in CRC cells. LOXL3 was a direct target of miR-34a. Overexpression of LOXL3 rescued miR-34a-repressed EMT after exposure to desflurane. Elevated expression of LOXL3 was enriched in CMS4 and CRIS-B subtypes. Patients with high expression of LOXL3 showed more lymph node metastasis, as well as poor survival.Conclusion: Desflurane induced EMT and metastasis in CRC through deregulation of miR-34a/LOXL3 axis. Clinical miR-34a mimic or inhibitor targeting LOXL3 might have a potential protective role when CRC patients anesthetized by desflurane.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Bin Dai ◽  
Guanghua Zhou ◽  
Zhiqiang Hu ◽  
Guangtong Zhu ◽  
Beibei Mao ◽  
...  

AbstractEpithelial–mesenchymal transition (EMT) plays a pivotal role in cancer progression. Hsa-miR-205 is considered one of the fundamental regulators of EMT. In the present study, we found that miR-205 was down-regulated in glioma tissues and human glioma cells U87 and U251. Meanwhile, miR-205 overexpression enhanced E-cadherin, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, miR-205 suppressed tumor growth. Additionally, HOXD9 was confirmed as a direct target of miR-205. Suppression of HOXD9 by miR-205 was demonstrated by luciferase reporter assay, quantitative real time-PCR analysis, and western blot. Moreover, we observed a negative correlation between miR-205 and HOXD9 in human glioma tissues. In summary, our findings demonstrated that miR-205 suppresses glioma tumor growth, invasion, and reverses EMT through down-regulating its target HOXD9.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Ming-Jun Fan ◽  
Yong-Hui Zou ◽  
Peng-Juan He ◽  
Shuai Zhang ◽  
Xiao-Mei Sun ◽  
...  

AbstractBackground: Emerging evidences have indicated that long non-coding RNAs (LncRNAs) play vital roles in cancer development and progression. Previous studies have suggested that overexpression of SPRY4 intronic transcript 1 (SPRY4-IT1) predicates poor prognosis and promotes tumor progress in cervical cancer (CC). However, the underlying mechanism of SPRY4-IT1 in CC remains unknown. The aim of the present study is to evaluate the function and mechanism of SPRY4-IT1 in CC.Methods: SPRY4-IT1 was detected by quantitative PCR. Wound-healing assay and Transwell assay were performed to detect cell migration and invasion, respectively. Western blotting assays were used to analyze the protein expression of E-cadherin, N-cadherin and vimentin. Tumor xenografts experiments were performed to detect the effect of SPRY4-IT1 in vivo. Dual luciferase reporter assay was used to investigate potential molecular mechanism of SPRY4-IT1 in CC cells.Results: SPRY4-IT1 was up-regulated in CC cell lines. Knockdown of SPRY4-IT1 significantly inhibited CC cells migration and invasion in vitro and in vivo. Moreover, knockdown of SPRY4-IT1 significantly suppressed the epithelial–mesenchymal transition (EMT) of CC by increased E-cadherin expression and decreased the N-cadherin and vimentin expression. Mechanically, SPRY4-IT1 could directly bind to miR-101-3p and effectively act as a competing endogenous RNA (ceRNA) for miR-101-3p to regulate the expression of the target gene ZEB1.Conclusions: Our findings indicate that the SPYR4-IT1/miR-101-3p/ZEB1 axis contributes to CC migration and invasion, which may provide novel insights into the function of lncRNA-driven tumorigenesis of CC.


2019 ◽  
Vol 133 (10) ◽  
pp. 1197-1213 ◽  
Author(s):  
Yiting Geng ◽  
Xiao Zheng ◽  
Wenwei Hu ◽  
Qi Wang ◽  
Yanjie Xu ◽  
...  

AbstractCircular RNA (circRNA) plays an important role in the development of human malignant tumors. Recently, an increasing number of circRNAs have been identified and investigated in various tumors. However, the expression pattern and biological function of circRNAs in colorectal cancer (CRC) still remain largely unexplored. In the present study, hsa_circ_0009361 was significantly down-regulated in CRC tissues and cells. Low expression level of hsa_circ_0009361 promoted the proliferation, epithelial–mesenchymal transition (EMT), migration, and invasion of CRC cells. Hsa_circ_0009361 was identified as the sponge of miR-582 by fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP), and luciferase reporter assays. Overexpression of hsa_circ_0009361 up-regulated the expression of adenomatous polyposis coli 2 (APC2) and inhibited the activity of the Wnt/β-catenin pathway by competitively combining with miR-582. Exogenous miR-582 and APC2 interventions could reverse the multiple biological functions mediated by hsa_circ_0009361 in CRC cells. In vivo experiments also confirmed that hsa_circ_0009361 inhibited the growth and metastasis of CRC. Hsa_circ_0009361 acted as a tumor suppressive sponge of miR-582, which could up-regulate the expression of APC2, inhibit the Wnt/β-catenin signaling, and suppress the growth and metastasis of CRC. Collectively, the hsa_circ_0009361/miR-582/APC2 network could be employed as a potential therapeutic target for CRC patients.


2021 ◽  
Author(s):  
Saisai Wang ◽  
Rushan Fei ◽  
Xijuan Xu ◽  
Jie Xu ◽  
Yuanyuan Yao ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignances worldwide. Several studies suggest a positive association between high plasma cholesterol level and CRC. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes. However, the critical role of 25-HC in the tumor growth and progression of CRC is largely unknown. Methods: CCK-8 assay, flow cytometry and Transwell migration and invasion assays were used to determine the effects of 25-HC on CRC cells proliferation, apoptosis and metastasis. Subcutaneous xenograft model and intra-splenic injection mouse model were established to investigate the effects of 25-HC on CRC in vivo. Immunohistochemistry staining was performed to determine the matrix metalloproteinases (MMPs) expressions in mice tumors and acetyl-CoA acyltransferase 1 (ACAA1) expression in human CRC tissues. The expressions of E-cadherin, N-cadherin and Vimentin were examined by immunofluorescent staining. MiR-92a-3p mimic, inhibitor and ACAA1 vector were constructed and transfected into LoVo cells. Results: 25-HC promotes CRC cells migration, invasion, and metastasis both in vitro and in vivo without affecting cells proliferation and apoptosis, accompanied by the upregulation of the expressions of MMPs and epithelial-mesenchymal transition (EMT) related markers. Mechanistically, miR-92a-3p expression is significantly elevated after 25-HC stimulation, while ACAA1 expression is down-regulated and negatively associated with tumor progression. Luciferase reporter assay confirms that miR-92a-3p could directly target ACAA1. Subsequent investigation indicates that nuclear factor (NF)-κB signaling is the downstream pathways of miR-92a-3p-ACAA1 axis in CRC cells. Conclusions: 25-HC promotes CRC cells metastasis by regulating cells migration, invasion and EMT through miR-92a-3p/ACAA1/NF-κB pathway.Trial registration: The current study was approved by the Ethics Committee of the First Affiliated Hospital, Zhejiang University on March22, 2018. The permission number was 2018-706 and 2020-1000.


2016 ◽  
Vol 39 (2) ◽  
pp. 501-510 ◽  
Author(s):  
Xiaoyan Ying ◽  
Kuang Wei ◽  
Zhe Lin ◽  
Yugui Cui ◽  
Jie Ding ◽  
...  

Background/Aims: MicroRNA-125b (miR-125b) is overexpressed in several types of cancer and contributes to chemotherapy resistance. However, its role in epithelial ovarian carcinoma remains unknown. The goal of this study was to identify the relationship between miR-125b and the epithelial-mesenchymal transition (EMT) in ovarian cancer. Methods: In total, 55patients with epithelial ovarian cancer (EOC) were included in our study. The relative expression of miR-125b was measured using real-time polymerase chain reaction (RT-PCR).The protein expression of SET and EMT-related indicators in cell lines were assessed by Western blot. The regulation of SET by miR-125b was confirmed using luciferase reporter assays. The effect of miR-125b on metastasis was evaluated using an in vivo metastasis model. Results: miR-125b expression was markedly lower in the EOC specimens. Ectopic expression of miR-125b in EOC cells significantly inhibited tumor invasion.miR-125b expression was negatively associated with both EMT and SET expression, in vivo and in vitro. Mechanistic studies identified SET as a direct target of miR-125b, and the downregulation of SET, observed during tumor migration, was affected by the overexpression of miR125b. Conclusion: miR-125b suppresses EOC cell migration and invasion by targeting the SET protein, and this study may provide a novel mechanism for understanding the progression of EOC.


Sign in / Sign up

Export Citation Format

Share Document