scholarly journals miR-1915-3p inhibits Bcl-2 expression in the development of gastric cancer

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Hong-wei Cui ◽  
Wen-yan Han ◽  
Li-na Hou ◽  
Ling Yang ◽  
Xian Li ◽  
...  

Abstract Many gene expressions changed during the development of gastric cancer, and non-coding RNAs including microRNAs (miRNAs) have been found to regulate cancer progression by participating in the process of tumor cell growth, migration, invasion and apoptosis. Our previous study has identified 29 miRNAs that are highly expressed in gastric cancer stem cells. One of these miRNAs, miR-1915-3p, has shown great potential as a diagnostic and prognostic biomarker for the cancers in liver, colon and thyroid, as well as in immune and kidney diseases. Herein, we found that miR-1915-3p exhibited low expression level in differentiated gastric cancer cell lines and gastric cancer tissues. It was found that the miR-1915-3p inhibited the growth of gastric cancer cells and thus promoted cell apoptosis. We discovered that the expressions of miR-1915-3p were significantly correlated to the lymph node metastasis and overall survival of patients with gastric cancer. Further study showed that there was a negative correlation between miR-1915-3p and Bcl-2 (B cell lymphoma/leukemia-2) expression, suggesting that Bcl-2 was a target gene of miR-1915-3p. Hence, miR-1915-3p possibly contributes to the development and progression of gastric cancer by inhibiting the anti-apoptotic protein Bcl-2. The finding provides a potential therapeutic strategy for gastric cancer.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qing Li ◽  
Dachuan Zhang ◽  
Hui Wang ◽  
Jun Xie ◽  
Lei Peng ◽  
...  

Solute carrier organic anion transporter family member 4A1 (SLCO4A1-AS1), a newly discovered lncRNA, may exert effects in tumors. Since its role in gastric cancer remains obscure, we sought to explore the mechanism of SLCO4A1-AS1 in gastric cancer. The relationship among SLCO4A1-AS1, miR-149-5p, and STAT3 was detected by bioinformatics, dual luciferase analysis, and Pearson’s test, and the expressions of these genes were determined by quantitative real-time PCR and Western blot. Moreover, CCK-8, flow cytometry, wound healing assay, and Transwell analysis were performed to verify the function of SLCO4A1-AS1 in gastric cancer. Rescue experiments were used to detect the role of miR-149-5p. The expressions of SLCO4A1-AS1 and STAT3 were increased, while the expression of miR-149-5p was suppressed in gastric cancer tissues and cell lines. In addition, STAT3 expression was negatively correlated with miR-149-5p expression but was positively correlated with SLCO4A1-AS1 expression. Overexpression of SLCO4A1-AS1 promoted cell viability, migration, invasion, and STAT3 expression but suppressed apoptosis, while knockdown of SLCO4A1-AS1 had the opposite effect. SLCO4A1-AS1 bound to miR-149-5p and targeted STAT3. Moreover, miR-149-5p mimic inhibited the malignant development of gastric cancer cells and obviously reversed the function of SLCO4A1-AS1 overexpression. Our research reveals that abnormally increased SLCO4A1-AS1 expression may be an important molecular mechanism in the development of gastric cancer.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yixun Lu ◽  
Benlong Zhang ◽  
Baohua Wang ◽  
Di Wu ◽  
Chuang Wang ◽  
...  

Abstract Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.


2017 ◽  
Vol 41 (3) ◽  
pp. 907-920 ◽  
Author(s):  
Jing Li ◽  
Lujun Chen ◽  
Yuqi Xiong ◽  
Xiao Zheng ◽  
Quanqin Xie ◽  
...  

Background/Abstract: PD-L1 has been an important target of cancer immunotherapy. We have showed that in human gastric cancer tissues, over-expression of PD-L1 was significantly associated with cancer progression and patients’ postoperative prognoses. However, as of now, how PD-L1 regulates the biological function of gastric cancer cells still remains elusive. Methods: We constructed the stable PD-L1 knockdown expression gastric cancer cell lines by using RNAi method, and further investigated the changes of biological functions including cell viability, migration, invasion, cell cycle, apoptosis, tumorigenicity in vivo, and the cytotoxic sensitivity to CIK therapy, in contrast to the control cells. Results: In the current study, we demonstrated that the knockdown of PD-L1 expression in human gastric cancer cells could significantly suppress the cell proliferation, migration, invasion, apoptosis, cell cycle, tumorigenicity in vivo and the cytotoxic sensitivity to CIK therapy. Conclusion: Our results indicate that PD-L1 contributes towards transformation and progression of human gastric cancer cells, and its intervention could prove to be an important therapeutic strategy against gastric cancer.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dong-Liang Chen ◽  
Hui Sheng ◽  
Dong-Sheng Zhang ◽  
Ying Jin ◽  
Bai-Tian Zhao ◽  
...  

Abstract Background Dysregulation of circular RNAs (circRNAs) plays an important role in the development of gastric cancer; thus, revealing the biological and molecular mechanisms of abnormally expressed circRNAs is critical for identifying novel therapeutic targets in gastric cancer. Methods A circRNA microarray was performed to identify differentially expressed circRNAs between primary and distant metastatic tissues and between gastric cancer tissues sensitive or resistant to anti-programmed cell death 1 (PD-1) therapy. The expression of circRNA discs large homolog 1 (DLG1) was determined in a larger cohort of primary and distant metastatic gastric cancer tissues. The role of circDLG1 in gastric cancer progression was evaluated both in vivo and in vitro, and the effect of circDLG1 on the antitumor activity of anti-PD-1 was evaluated in vivo. The interaction between circDLG1 and miR-141-3p was assessed by RNA immunoprecipitation and luciferase assays. Results circDLG1 was significantly upregulated in distant metastatic lesions and gastric cancer tissues resistant to anti-PD-1 therapy and was associated with an aggressive tumor phenotype and adverse prognosis in gastric cancer patients treated with anti-PD-1 therapy. Ectopic circDLG1 expression promoted the proliferation, migration, invasion, and immune evasion of gastric cancer cells. Mechanistically, circDLG1 interacted with miR-141-3p and acted as a miRNA sponge to increase the expression of CXCL12, which promoted gastric cancer progression and resistance to anti-PD-1-based therapy. Conclusions Overall, our findings demonstrate how circDLG1 promotes gastric cancer cell proliferation, migration, invasion and immune evasion and provide a new perspective on the role of circRNAs during gastric cancer progression.


2022 ◽  
Vol 11 ◽  
Author(s):  
Haijuan Gu ◽  
Yuejiao Zhong ◽  
Jibin Liu ◽  
Qian Shen ◽  
Rong Wei ◽  
...  

Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer. In the present study, we mined The Cancer Genome Atlas (TCGA) database and analyzed the gene expression profiles between gastric cancer tissues and normal gastric tissues. A series of differentially expressed lncRNAs, miRNAs and mRNAs between gastric cancer tissues and normal gastric tissues were identified. Based on the differentially expressed genes, we constructed miRNA-mRNA network, lncRNA-mRNA network and transcriptional factors-mRNA-miRNA-lncRNA network. Furthermore, the Kaplan survival analysis showed that high expression levels of EVX1, GBX2, GCM1, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13 were all significantly correlated with shorter overall survival of the patients with gastric cancer. On the other hand, low expression level of HOXA13 was associated with shorter overall survival of patients with gastric cancer. Among these hub genes, we performed the in vitro functional studies of HOXC8 in the gastric cancer cells. Knockdown of HOXC8 and overexpression of miR-4256 both significantly repressed the gastric cancer cell proliferation and migration, and miR-4256 repressed the expression of HOXC8 via targeting its 3’ untranslated region in gastric cancer cells. Collectively, our results revealed that a complex interaction networks of differentially expressed genes in gastric cancer, and further functional studies indicated that miR-4256/HOXC8 may be an important axis in regulating gastric cancer progression.


2021 ◽  

Background and objective: To assess the expression of Nuclear receptor binding SET domain protein 1 (NSD1) in human gastric cancer tissues and cells and investigate its possible role in gastric cancer. Methods: TCGA database was used to assess the expression levels of NSD1 in human gastric cancer tissues. Immunoblot assays were performed to detect NSD1 expression levels in gastric cancer cell lines. MTT and colony formation assays were conduced to detect its role in the survival of gastric cancer cells. Wound closure and transwell were performed to investigate the effects of NSD1 on the motility of gastric cancer cells. Immunoblot assays were also conducted to confirm its effects on WNT10B/β-catenin pathway. Results: We found the high expression levels of NSD1 in human gastric cancer tissues and cell lines. NSD1 depletion suppressed the survival and motility of gastric cancer cells. Additionally, we revealed NSD1 activated the WNT10B/β-catenin pathway, therefore promoted gastric cancer progression. Conclusion: We revealed the high NSD1 expression in gastric cancer tissues and cells, and thought NSD1 could serve as a promising gastric cancer target.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhongsong Zhao ◽  
Xueping Liu

Background. Long noncoding ribonucleic acids (lncRNAs) were closely related to the development of gastric cancer. This study investigated the effect of SNHG7 on gastric cancer progression and its potential molecular mechanism. Methods. SNHG7 and microRNA-485-5p (miR-485-5p) expressions in gastric cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8), wound healing, and transwell experiments were used to detect cell proliferation, migration, and invasion. The dual luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Pearson’s correlation analysis were used to confirm the relationship between SNHG7 and miR-485-5p. Results. SNHG7 expression was increased in human gastric cancer tissues and cells. Knockdown of SNHG7 could notably inhibit the gastric cancer cells proliferation, migration, and invasion. The dual-luciferase reporter assay and RIP experiments proved that miR-485-5p was a direct target of SNHG7. At the same time, further experiments demonstrated that miR-485-5p inhibition reversed the suppression of SNHG7 knockdown on gastric cancer cells proliferation, migration, and invasion. Conclusions. SNHG7 knockdown could hamper gastric cancer progression via inhibiting miR-485-5p expression, providing a novel understanding for gastric cancer development.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Zhou ◽  
Hui Qiao ◽  
Miaomiao Zeng ◽  
Lei Yang ◽  
Yongning Zhou ◽  
...  

Abstract Background Mounting evidence implicates circular RNAs (circRNAs) in various biological processes during cancer progression. Gastric cancer is a main cause of cancer-related deaths worldwide. Herein, we aimed at investigating whether circ_002117 mediates gastric cancer progression through endoplasmic reticulum (ER) stress. Methods Bioinformatics analysis detected differentially expressed circRNAs and their target miRNA candidates, and RT-qPCR was performed to detect expression of circ_002117, microRNA (miRNA)-370 and HERPUD1 in gastric cancer tissues and cells. Gastric cancer cells were transfected with plasmids and their proliferative ability and apoptosis were detected with gain- and loss-of-function assay. The ER of treated cells was observed under a transmission electron microscope. Dual-luciferase reporter gene assay and RIP were performed to detect the interaction between HEPRUD1, miR-370 and circ_002117-treated cells were injected into mice to establish xenograft tumor model. Results Circ_002117 and HEPRUD1 were poorly expressed whereas miR-370 was highly expressed in clinical cancer tissues and cells. Circ_002117 was indicated to target and suppress miR-370 expression, while HERPUD1 was directly targeted by miR-370. Circ_002117 overexpression or miR-370 deficiency promoted ER stress-induced apoptosis and decreased proliferation of gastric cancer cells, which was reversed by silencing of HEPRUD1. Circ_002117 overexpression or miR-370 depletion significantly suppressed gastric cancer tumorigenesis in vivo. Conclusions Taken altogether, circ_002117 facilitated ER stress-induced apoptosis in gastric cancer by upregulating HERPUD1 through miR-370 inhibition.


2021 ◽  
Author(s):  
Ling Gao ◽  
Tingting Xia ◽  
Mingde Qin ◽  
Xiaofeng Xue ◽  
Linhua Jiang ◽  
...  

Abstract BackgroundGastric cancer is a type of malignant tumor with high morbidity and mortality. It has been shown that circular RNAs (circRNAs) exert critical functions in gastric cancer progression via working as microRNA (miRNA) sponges to regulate gene expression. However, the role and potential molecular mechanism of circRNAs in gastric cancer remain largely unknown.MethodsCircPTK2 (hsa_circ_0005273) was identified by bioinformatics analysis and validated by RT-qPCR assay. Bioinformatics prediction, dual-luciferase reporter and RNA pull down assays were used to determine the interaction between circPTK2, miR-196a-3p, AATK.ResultsThe level of circPTK2 was markedly downregulated in gastric cancer tissues. Upregulation of circPTK2 suppressed the proliferation, migration and invasion of gastric cancer cells, while downregulation of circPTK2 exhibited opposite effects. Mechanically, circPTK2 could competitively bind to miR-196a-3p and prevent miR-196a-3p to reduce the expression of AATK. In addition, circPTK2 overexpression inhibited tumorigenesis in a xenograft mouse model of gastric cancer.ConclusionCollectively, circPTK2 functions as a tumor suppressor to suppress gastric cancer cell proliferation through regulating miR-196a-3p/AATK axis, suggesting that circPTK2 may serve as novel therapeutic target for gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document