Small RNAs of the halophilic archaeon Haloferax volcanii

2009 ◽  
Vol 37 (1) ◽  
pp. 133-136 ◽  
Author(s):  
Jörg Soppa ◽  
Julia Straub ◽  
Mariam Brenneis ◽  
Angelika Jellen-Ritter ◽  
Ruth Heyer ◽  
...  

In recent years, sRNAs (small non-coding RNAs) have been found to be abundant in eukaryotes and bacteria and have been recognized as a novel class of gene expression regulators. In contrast, much less is known about sRNAs in archaea, except for snoRNAs (small nucleolar RNAs) that are involved in the modification of bases in stable RNAs. Therefore bioinformatic and experimental RNomics approaches were undertaken to search for the presence of sRNAs in the model archaeon Haloferax volcanii, resulting in more than 150 putative sRNA genes being identified. Northern blot analyses were used to study (differential) expression of sRNA genes. Several chromosomal deletion mutants of sRNA genes were generated and compared with the wild-type. It turned out that two sRNAs are essential for growth at low salt concentrations and high temperatures respectively, and one is involved in the regulation of carbon metabolism. Taken together, it could be shown that sRNAs are as abundant in H. volcanii as they are in well-studied bacterial species and that they fulfil important biological roles under specific conditions.

2021 ◽  
Vol 7 (2) ◽  
pp. 30
Author(s):  
Laeya Baldini ◽  
Bruno Charpentier ◽  
Stéphane Labialle

Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.


1993 ◽  
Vol 13 (7) ◽  
pp. 4382-4390
Author(s):  
O J Rimoldi ◽  
B Raghu ◽  
M K Nag ◽  
G L Eliceiri

We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.


2008 ◽  
Vol 190 (8) ◽  
pp. 2947-2956 ◽  
Author(s):  
Catalina Arango Pinedo ◽  
Ryan M. Bringhurst ◽  
Daniel J. Gage

ABSTRACT Sinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti. The genes present code for Hpr and ManX (an EIIAMan-type enzyme). HPr and EIIA regulate carbon utilization in other bacteria. hpr and manX in-frame deletion mutants exhibited altered carbon metabolism and other phenotypes. Loss of HPr resulted in partial relief of succinate-mediated catabolite repression, extreme sensitivity to cobalt limitation, rapid die-off during stationary phase, and altered succinoglycan production. Loss of ManX decreased expression of melA-agp and lac, the operons needed for utilization of α- and β-galactosides, slowed growth on diverse carbon sources, and enhanced accumulation of high-molecular-weight succinoglycan. A strain with both hpr and manX deletions exhibited phenotypes similar to those of the strain with a single hpr deletion. Despite these strong phenotypes, deletion mutants exhibited wild-type nodulation and nitrogen fixation when they were inoculated onto Medicago sativa. The results show that HPr and ManX (EIIAMan) are involved in more than carbon regulation in S. meliloti and suggest that the phenotypes observed occur due to activity of HPr or one of its phosphorylated forms.


2020 ◽  
Vol 21 (7) ◽  
pp. 2611 ◽  
Author(s):  
Carlos DeOcesano-Pereira ◽  
Raquel A. C. Machado ◽  
Ana Marisa Chudzinski-Tavassi ◽  
Mari Cleide Sogayar

Non-coding RNAs (ncRNAs) comprise a diversity of RNA species, which do not have the potential to encode proteins. Non-coding RNAs include two classes of RNAs, namely: short regulatory ncRNAs and long non-coding RNAs (lncRNAs). The short regulatory RNAs, containing up to 200 nucleotides, include small RNAs, such as microRNAs (miRNA), short interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs). The lncRNAs include long antisense RNAs and long intergenic RNAs (lincRNAs). Non-coding RNAs have been implicated as master regulators of several biological processes, their expression being strictly regulated under physiological conditions. In recent years, particularly in the last decade, substantial effort has been made to investigate the function of ncRNAs in several human diseases, including cancer. Glioblastoma is the most common and aggressive type of brain cancer in adults, with deregulated expression of small and long ncRNAs having been implicated in onset, progression, invasiveness, and recurrence of this tumor. The aim of this review is to guide the reader through important aspects of miRNA and lncRNA biology, focusing on the molecular mechanism associated with the progression of this highly malignant cancer type.


2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Anna Maria Mleczko ◽  
Kamilla Bąkowska-Żywicka

Small nucleolar RNAs (snoRNAs) are molecules placed in the cell nucleolus and in Cajal bodies. Many scientific reports clearly show that snoRNAs are not only responsible for modifications of other RNAs but also possess multiple other functions such as metabolic stress regulation or modulation of alternative splicing. Full-length snoRNAs as well as small RNAs derived from snoRNAs have been implied in human diseases such as cancer or Prader – Willi Syndrome.  In this review we would like to describe these non – canonical roles of snoRNAs and their derivatives  with the emphasis on their role in human diseases. 


2020 ◽  
Author(s):  
Flaria El-Khoury ◽  
Jérôme Bignon ◽  
Jean-René Martin

AbstractSmall nucleolar RNAs (snoRNAs) are non-coding RNAs conserved from archeobacteria to mammals. In humans, various snoRNAs have been associated with pathologies as well as with cancer. Recently in Drosophila, a new snoRNA named jouvence has been involved in lifespan. Since snoRNAs are well conserved through evolution, both structurally and functionally, jouvence orthologue has been identified in human, allowing hypothesizing that jouvence could display a similar function (increasing healthy lifespan) in human. Here, we report the characterization of the human snoRNA-jouvence, which was not yet annotated in the genome. We show, both in stably cancerous cell lines and in primary cells, that its overexpression stimulates the cell proliferation. In contrast, its knockdown, by siRNA leads to an opposite phenotype, a decrease in cell proliferation. Transcriptomic analysis reveals that overexpression of jouvence leads to a dedifferentiation signature of the cells, a cellular effect comparable to rejuvenation. Inversely, the knockdown of jouvence leads to a decrease of genes involved in ribosomes biogenesis and spliceosome in agreement with the canonical role of a H/ACA box snoRNA. In this context, jouvence could represent a now tool to fight against the deleterious effect of aging, as well as a new target in cancer therapy.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 361 ◽  
Author(s):  
Chantal Nagel ◽  
Anja Machulla ◽  
Sebastian Zahn ◽  
Jörg Soppa

Zinc finger domains are highly structured and can mediate interactions to DNA, RNA, proteins, lipids, and small molecules. Accordingly, zinc finger proteins are very versatile and involved in many biological functions. Eukaryotes contain a wealth of zinc finger proteins, but zinc finger proteins have also been found in archaea and bacteria. Large zinc finger proteins have been well studied, however, in stark contrast, single domain zinc finger µ-proteins of less than 70 amino acids have not been studied at all, with one single exception. Therefore, 16 zinc finger µ-proteins of the haloarchaeon Haloferax volcanii were chosen and in frame deletion mutants of the cognate genes were generated. The phenotypes of mutants and wild-type were compared under eight different conditions, which were chosen to represent various pathways and involve many genes. None of the mutants differed from the wild-type under optimal or near-optimal conditions. However, 12 of the 16 mutants exhibited a phenotypic difference under at least one of the four following conditions: Growth in synthetic medium with glycerol, growth in the presence of bile acids, biofilm formation, and swarming. In total, 16 loss of function and 11 gain of function phenotypes were observed. Five mutants indicated counter-regulation of a sessile versus a motile life style in H. volcanii. In conclusion, the generation and analysis of a set of deletion mutants demonstrated the high importance of zinc finger µ-proteins for various biological functions, and it will be the basis for future mechanistic insight.


2020 ◽  
Vol 139 (4) ◽  
pp. 349-359
Author(s):  
Rituparno Sen ◽  
Jörg Fallmann ◽  
Maria Emília M. T. Walter ◽  
Peter F. Stadler

AbstractMany small nucleolar RNAs and many of the hairpin precursors of miRNAs are processed from long non-protein-coding host genes. In contrast to their highly conserved and heavily structured payload, the host genes feature poorly conserved sequences. Nevertheless, there is mounting evidence that the host genes have biological functions beyond their primary task of carrying a ncRNA as payload. So far, no connections between the function of the host genes and the function of their payloads have been reported. Here we investigate whether there is evidence for an association of host gene function or mechanisms with the type of payload. To assess this hypothesis we test whether the miRNA host genes (MIRHGs), snoRNA host genes (SNHGs), and other lncRNA host genes can be distinguished based on sequence and/or structure features unrelated to their payload. A positive answer would imply a functional and mechanistic correlation between host genes and their payload, provided the classification does not depend on the presence and type of the payload. A negative answer would indicate that to the extent that secondary functions are acquired, they are not strongly constrained by the prior, primary function of the payload. We find that the three classes can be distinguished reliably when the classifier is allowed to extract features from the payloads. They become virtually indistinguishable, however, as soon as only sequence and structure of parts of the host gene distal from the snoRNAs or miRNA payload is used for classification. This indicates that the functions of MIRHGs and SNHGs are largely independent of the functions of their payloads. Furthermore, there is no evidence that the MIRHGs and SNHGs form coherent classes of long non-coding RNAs distinguished by features other than their payloads.


2010 ◽  
Vol 38 (2) ◽  
pp. 672-676 ◽  
Author(s):  
Julie Rodor ◽  
Ingrid Letelier ◽  
Loreto Holuigue ◽  
Manuel Echeverria

The snoRNAs (small nucleolar RNAs) and related scaRNAs (small RNAs in the Cajal bodies) represent a major class of nuclear RNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNAs, snRNAs (small nuclear RNAs) and other RNA targets. In vivo, all snoRNAs associate with a set of four highly conserved nucleolar proteins, forming the functional snoRNPs (small nucleolar ribonucleoproteins). The core structure of these mature snoRNPs has now been well described in eukaryotes, but less is known of their biogenesis. Recent data in animals and yeast reveal that assembly of the snoRNPs is a complex process that implicates several auxiliary proteins and transient protein–protein interactions. This new level of snoRNP regulation is now beginning to be unravelled in animals and yeast, but remains unexplored in plants. In the present paper, we review recent data from genomic and functional analysis allowing the identification and study of factors controlling the biogenesis of plant snoRNPs and their impact on plant development.


2013 ◽  
Vol 54 ◽  
pp. 53-77 ◽  
Author(s):  
Lauren Lui ◽  
Todd Lowe

snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2′-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.


Sign in / Sign up

Export Citation Format

Share Document