The role of histone deacetylases in rheumatoid arthritis fibroblast-like synoviocytes

2013 ◽  
Vol 41 (3) ◽  
pp. 783-788 ◽  
Author(s):  
Sarah Hawtree ◽  
Munitta Muthana ◽  
Anthony G. Wilson

RA (rheumatoid arthritis) is an inflammatory disease of synovial joints affecting approximately 1% of the population. One of the main cell types involved in damage to RA joint tissue is the FLSs (fibroblast-like synoviocytes). These have a semi-transformed, auto-aggressive phenotype typified by loss of contact inhibition, reduced apoptosis and the production of matrix-degrading enzymes. The mechanisms involved in the development of this phenotype are unclear; however, increasing evidence implicates alterations in the epigenetic regulation of gene expression. Reduced acetylation of amino acids in the tails of histone proteins is an epigenetic mark associated with transcriptional repression and is controlled by the HDAC (histone deacetylase) enzyme family. To date, evidence has implicated HDACs in the auto-aggressive phenotype of FLSs, and administration of HDAC inhibitors to both animal models of RA and individuals with juvenile arthritis has shown efficacy in attenuating inflammation and tissue damage. This highlights a role for HDACs in disease pathogenesis and, more importantly, that HDACs are potential novel therapeutic targets.

2020 ◽  
Vol 89 ◽  
pp. 107064
Author(s):  
Maryam Masoumi ◽  
Mohsen Mehrabzadeh ◽  
Salman Mahmoudzehi ◽  
Mohammad Javad Mousavi ◽  
Sirous Jamalzehi ◽  
...  

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Yufan Wangyang ◽  
Linhong Yi ◽  
Tao Wang ◽  
Yanbo Feng ◽  
Guangwang Liu ◽  
...  

Background Fibroblast-like synoviocytes (FLSs) that line the intimal synovium play a crucial role in the pathogenesis of rheumatoid arthritis (RA). miR-199a-3p is a highly conserved miRNA that has been shown to regulate a variety of growth behaviors in diverse cell types. However, the role of miR-199a-3p in RA-FLS is still unknown. Methods Here, we presented the first experimental evidence showing that miR-199a-3p was a critical regulator of RA-FLS function. Results miR-199a-3p expression was significantly reduced in RA-FLS compared with normal FLS. Ectopic expression of miR-199a-3p significantly inhibited RA-FLS proliferation and induced apoptosis, which was demonstrated by an increase in caspase-3 activity and Bax/Bcl-2 ratio. Our bioinformatics analysis identified Retinoblastoma 1 (RB1) gene to be a direct target of miR-199a-3p. In RA-FLS, miR-199a-3p directly targetted the 3′-UTR of RB1 mRNA and suppressed endogenous RB1 expression, whereas miR-199a-3p-resistant variant of RB1 was not affected. Silencing RB1 decreased cell proliferation and promoted apoptosis in RA-FLS, an effect comparable with miR-199a-3p overexpression. Enforced expression of RB1 partially restored cell proliferation and attenuated apoptosis in miR-199a-3p-overexpressing RA-FLSs. Conclusion In summary, miR-199a-3p is down-regulated in RA-FLS, and miR-199a-3p inhibits proliferation and induces apoptosis in RA-FLS, partially via targetting RB1. The miR-199a-3p/RB1 pathway may represent a new therapeutic target for RA.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yasuto Araki ◽  
Toshihide Mimura

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is characterized by synovial hyperplasia and progressive joint destruction. The activation of RA synovial fibroblasts (SFs), also called fibroblast-like synoviocytes (FLS), contributes significantly to perpetuation of the disease. Genetic and environmental factors have been reported to be involved in the etiology of RA but are insufficient to explain it. In recent years, accumulating results have shown the potential role of epigenetic mechanisms, including histone modifications, DNA methylation, and microRNAs, in the development of RA. Epigenetic mechanisms regulate chromatin state and gene transcription without any change in DNA sequence, resulting in the alteration of phenotypes in several cell types, especially RASFs. Epigenetic changes possibly provide RASFs with an activated phenotype. In this paper, we review the roles of epigenetic mechanisms relevant for the progression of RA.


2018 ◽  
Vol 34 ◽  
pp. 52-58 ◽  
Author(s):  
Jingsheng Shi ◽  
Guanglei Zhao ◽  
Yibing Wei

The dynamic balance between acetylation and deacetylation of histones plays a crucial role in the epigenetic regulation of gene expression. It is equilibrated by two families of enzymes: histone acetyltransferases and histone deacetylases (HDACs). HDACs repress transcription by regulating the conformation of the higher-order chromatin structure. HDAC inhibitors have recently become a class of chemical agents for potential treatment of the abnormal chromatin remodeling process involved in certain cancers. In this study, we constructed a large dataset to predict the activity value of HDAC1 inhibitors. Each compound was represented with seven fingerprints, and computational models were subsequently developed to predict HDAC1 inhibitors via five machine learning methods. These methods include naïve Bayes, κ-nearest neighbor, C4.5 decision tree, random forest, and support vector machine (SVM) algorithms. The best predicting model was CDK fingerprint with SVM, which exhibited an accuracy of 0.89. This model also performed best in five-fold cross-validation. Some representative substructure alerts responsible for HDAC1 inhibitors were identified by using MoSS in KNIME, which could facilitate the identification of HDAC1 inhibitors.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.


2016 ◽  
Vol 68 (7) ◽  
pp. 1614-1626 ◽  
Author(s):  
Ricard Garcia-Carbonell ◽  
Ajit S. Divakaruni ◽  
Alessia Lodi ◽  
Ildefonso Vicente-Suarez ◽  
Arindam Saha ◽  
...  

2016 ◽  
Vol 21 (6) ◽  
pp. 643-652 ◽  
Author(s):  
Chia-Wen Hsu ◽  
David Shou ◽  
Ruili Huang ◽  
Thai Khuc ◽  
Sheng Dai ◽  
...  

Histone deacetylases (HDACs) are a class of epigenetic enzymes that regulate gene expression by histone deacetylation. Altered HDAC function has been linked to cancer and neurodegenerative diseases, making HDACs popular therapeutic targets. In this study, we describe a screening approach for identification of compounds that inhibit endogenous class I and II HDACs. A homogeneous, luminogenic HDAC I/II assay was optimized in a 1536-well plate format in several human cancer cell lines, including HCT116 and human neural stem cells. The assay confirmed 37 known HDAC inhibitors from two libraries of known epigenetics-active compounds. Using the assay, we identified a group of potential HDAC inhibitors by screening the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection of 2527 small-molecule drugs. The selected compounds showed similar HDAC I/II inhibitory potency and efficacy values in both HCT116 and neural stem cells. Several previously unidentified HDAC inhibitors were further evaluated and profiled for their selectivity against a panel of 10 HDAC I/II isoforms using fluorogenic HDAC biochemical assays. In summary, our results show that several novel HDAC inhibitors, including nafamostat and piceatannol, have been identified using the HDAC I/II cell-based assay, and multiple cell types have been validated for high-throughput screening of large chemical libraries.


2017 ◽  
Vol 45 (3) ◽  
pp. 335-340 ◽  
Author(s):  
Bing Xu ◽  
Jian Li ◽  
Changsun Wu ◽  
Chunyan Liu ◽  
Xinfeng Yan ◽  
...  

Objective.Thioredoxin domain containing 5 (TXNDC5) is highly expressed in synovial membranes of rheumatoid arthritis (RA). Our study aimed to investigate the pathogenic role of TXNDC5 in RA.Methods.PCR arrays, CCK-8 assays, flow cytometry, and transwell migration assays were used to analyze cultured rheumatoid arthritis synovial fibroblasts (RASF).Results.Increased CXCL10 and tumor necrosis factor-related apoptosis-inducing ligand levels were detected in RASF transfected with anti-TXNDC5 small interfering RNA (siRNA), and decreased expression was detected in RASF transfected with TXNDC5-expressing plasmids. Significantly attenuated RASF proliferation and migration, and increased RASF apoptosis, were observed in the siRNA-transfected RASF.Conclusion.Downregulation of TXNDC5 could contribute to RASF antiangiogenic and proapoptotic features through the suppression of CXCL10 and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand).


2021 ◽  
Vol 12 ◽  
Author(s):  
Chenggui Miao ◽  
Liangliang Bai ◽  
Yaru Yang ◽  
Jinling Huang

Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.


Sign in / Sign up

Export Citation Format

Share Document