scholarly journals Allostatic load and ageing: linking the microbiome and nutrition with age-related health

2019 ◽  
Vol 47 (4) ◽  
pp. 1165-1172 ◽  
Author(s):  
Paul G. Shiels ◽  
Sarah Buchanan ◽  
Colin Selman ◽  
Peter Stenvinkel

Abstract Ageing is a process of decline in physiological function and capability over time. It is an anticipated major burden on societal health-care costs due to an increasingly aged global population. Accelerated biological ageing is a feature of age-related morbidities, which also appear to share common underpinning features, including low-grade persistent inflammation, phosphate toxicity, diminished Nrf2 activity, a depleted metabolic capability, depressed mitochondrial biogenesis and a low diversity gut microbiome. Social, psychological, lifestyle and nutritional risk factors can all influence the trajectory of age-related health, as part of an individual's exposome, which reflects the interplay between the genome and the environment. This is manifest as allostatic (over)load reflecting the burden of lifestyle/disease at both a physiological and molecular level. In particular, age-related genomic methylation levels and inflammatory status reflect exposome differences. These features may be mediated by changes in microbial diversity. This can drive the generation of pro-inflammatory factors, such as TMAO, implicated in the ‘diseasome’ of ageing. Additionally, it can be influenced by the ‘foodome’, via nutritional differences affecting the availability of methyl donors required for maintenance of the epigenome and by the provision of nutritionally derived Nrf2 agonists. Both these factors influence age-related physiological resilience and health. This offers novel insights into possible interventions to improve health span, including a rage of emerging senotherapies and simple modifications of the nutritional and environmental exposome. In essence, the emerging strategy is to treat ageing processes common to the diseasome of ageing itself and thus preempt the development or progression of a range of age-related morbidities.

2018 ◽  
Vol 25 (11) ◽  
pp. 1294-1310 ◽  
Author(s):  
Raffaella Mastrocola ◽  
Manuela Aragno ◽  
Giuseppe Alloatti ◽  
Massimo Collino ◽  
Claudia Penna ◽  
...  

In the last decades, the extension of life expectancy and the increased consumption of foods rich in saturated fats and added sugars have exposed the general population to emerging health problems. The prevalence of metabolic syndrome (MS), composed of a cluster of factors as obesity, dyslipidemia, hyperglycemia, and hypertension, is rapidly increasing in industrialized and developing countries leading to precocious onset of age-related diseases. Indeed, oxidative stress, accumulation of advanced glycation endproducts, and a chronic low-grade inflammation are common features of MS and physiological ageing. In particular, the entire set of MS factors contributes to the development of an inflammatory status named metaflammation, which has been associated with activation of early innate immune response through the assembling of the multiprotein complex inflammasome. The most investigated family of inflammasome platforms is the NOD-like receptor pyridine containing (NLRP) 3, which is activated by several exogenous and endogenous stimuli, leading to the sequential cleavage of caspase-1 and IL-1β, followed by secretion of active IL-1β. We here collect the most recent findings on NLRP3 activation in MS providing evidence of its central role in disease progression and organ dysfunction in target tissues of metaflammation, in particular in cardiovascular, hepatic and renal complications, with a focus on oxidative stress and advanced glycation endproducts. A wide overview of the most promising strategies for the modulation of NLRP3 activation and related metabolic repercussions is also provided, since the finding of specific pharmacological tools is an urgent requirement to reduce the social and economic burden of MS- and elderly-associated diseases.


2019 ◽  
Vol 20 (4) ◽  
pp. 990 ◽  
Author(s):  
Svetlana Di Benedetto ◽  
Marcel Gaetjen ◽  
Ludmila Müller

Aging is characterized by a chronic increase in the systemic levels of inflammatory cytokines even in ostensibly healthy individuals. The drivers of age-related increase in systemic inflammation are unclear but one potential contributor may be a persistent infection with Cytomegalovirus (CMV). In this study, we characterized the inflammatory status of 161 older participants recruited to undergo a six-month training intervention. We investigated the influence of gender and CMV-seropositivity on the main inflammatory and anti-inflammatory circulating biomarkers, such as cytokines, receptor antagonist, soluble receptor, immune cells, and relevant metabolic markers. We found that both gender and CMV-seropositivity modulate circulating peripheral biomarkers, and that CMV-infection modifies associations among the latter. Moreover, we observed an interaction between CMV-serostatus and gender associations with cognitive abilities: gender differences in fluid intelligence (Gf) and working memory (WM) were noted only in CMV-negative individuals. Finally, we found that in the CMV-seronegative participants Gf, episodic memory (EM), and WM correlated negatively with pro-inflammatory tumor necrosis factor (TNF); and EM correlated positively with anti-inflammatory interleukin (IL)-10. In CMV-seropositive individuals EM and Gf correlated negatively with pro-inflammatory IL-6, while EM, Gf, and WM correlated negatively with anti-inflammatory IL-1RA. We conclude that both CMV-serostatus and gender may modulate neuroimmune factors, cognitive performance and the relationship between the two domains and should therefore be considered in comparative and interventional studies with elderly people.


Author(s):  
Tania Rescigno ◽  
Mario F. Tecce ◽  
Anna Capasso

The increase in the average lifespan and the consequent proportional growth of the elderly segment of society has furthered the interest in studying ageing processes. Ageing may be considered a multifactorial process derived from the interaction between genetic and environmental factors including lifestyle. There is ample evidence in many species that the maximum age attainable (maximum lifespan potential, MLSP) is genetically determined and several mitochondrial DNA polymorphisms are associated with longevity. Many studies have shown that most of the phenotypic characteristics observed in the aging process are the result of the occurrence, with age, of a low grade chronic pro-inflammatory status called "inflammaging", partially under genetic control. The term indicate that aging is accompanied by a low degree of chronic inflammatory, an up-regulation of inflammatory response and that inflammatory changes are common to many age-related diseases. Therefore, the theory of oxidation-inflammation was proposed as the main cause of aging. Accordingly, the chronic oxidative stress, that appears with age, affects all cells and especially those of the regulatory systems, such as the nervous, endocrine, and immune systems and the communication between them. This prevents an adequate homeostasis and, therefore, the preservation of health. It was also proposed that the immune system plays a key role in the aging process, specifically in the rate of aging, since there is a relationship between the redox state and functional capacity of immune cells and longevity of individuals. Moreover, the role of the immune system in senescence could be of universal application. A confirmation of the central role of the immune system in oxi-inflamm-aging is that the administrationintake? of adequate amounts of antioxidants in the diet improves immune function, decreases their oxidative stress, and consequently increases longevity. The promotion of healthy lifestyles is one of the major goals of governments and international agencies all over the world. Human molecular processes are influenced by both physiological pathways and exogenous factors which include, for instance, those originating from diet. Dietary intake has substantive effects on molecular processes of metabolic health. Nutrients can directly regulate physiological changes in human body. In fact, in addition to have an energetic and structural value, nutritional intake provides bioactive molecules which are selectively able to modulate specific metabolic pathways, noticeably affecting cardiovascular and neoplastic diseases development or progress. Numerous bioactive nutrients are being progressively identified and their chemopreventive effects are being described at clinical and molecular mechanism levels. Systematic analyses comprise all “omics” technologies (such as transcriptomics, proteomics and metabolomics) and the goal is to investigate bioactive molecules effects derived from the diet. Nutrigenomic knowledge on physiologic status and disease risk will provide both developments of better diagnostic procedures and of new therapeutic strategies specifically targeted on nutritionally relevant processes. The present review was aimed to understand the molecular mechanisms underlying beneficial effects of bioactive nutrients and nutrigenomics on age-related diseases.


Author(s):  
Angela Raucci ◽  
Federica Macrì ◽  
Stefania Castiglione ◽  
Ileana Badi ◽  
Maria Cristina Vinci ◽  
...  

AbstractThe age-related vasculature alteration is the prominent risk factor for vascular diseases (VD), namely, atherosclerosis, abdominal aortic aneurysm, vascular calcification (VC) and pulmonary arterial hypertension (PAH). The chronic sterile low-grade inflammation state, alias inflammaging, characterizes elderly people and participates in VD development. MicroRNA34-a (miR-34a) is emerging as an important mediator of inflammaging and VD. miR-34a increases with aging in vessels and induces senescence and the acquisition of the senescence-associated secretory phenotype (SASP) in vascular smooth muscle (VSMCs) and endothelial (ECs) cells. Similarly, other VD risk factors, including dyslipidemia, hyperglycemia and hypertension, modify miR-34a expression to promote vascular senescence and inflammation. miR-34a upregulation causes endothelial dysfunction by affecting ECs nitric oxide bioavailability, adhesion molecules expression and inflammatory cells recruitment. miR-34a-induced senescence facilitates VSMCs osteoblastic switch and VC development in hyperphosphatemia conditions. Conversely, atherogenic and hypoxic stimuli downregulate miR-34a levels and promote VSMCs proliferation and migration during atherosclerosis and PAH. MiR34a genetic ablation or miR-34a inhibition by anti-miR-34a molecules in different experimental models of VD reduce vascular inflammation, senescence and apoptosis through sirtuin 1 Notch1, and B-cell lymphoma 2 modulation. Notably, pleiotropic drugs, like statins, liraglutide and metformin, affect miR-34a expression. Finally, human studies report that miR-34a levels associate to atherosclerosis and diabetes and correlate with inflammatory factors during aging. Herein, we comprehensively review the current knowledge about miR-34a-dependent molecular and cellular mechanisms activated by VD risk factors and highlight the diagnostic and therapeutic potential of modulating its expression in order to reduce inflammaging and VD burn and extend healthy lifespan.


2020 ◽  
Vol 99 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Antero Salminen

Abstract Chronic low-grade inflammation is a common hallmark of the aging process and many age-related diseases. There is substantial evidence that persistent inflammation is associated with a compensatory anti-inflammatory response which prevents excessive tissue damage. Interestingly, the inflammatory state encountered with aging, called inflammaging, is associated with the anti-inflammaging process. The age-related activation of immunosuppressive network includes an increase in the numbers of myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and macrophages (Mreg/M2c). Immunosuppressive cells secrete several anti-inflammatory cytokines, e.g., TGF-β and IL-10, as well as reactive oxygen and nitrogen species (ROS/RNS). Moreover, immunosuppressive cells suppress the function of effector immune cells by catabolizing l-arginine and tryptophan through the activation of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO), respectively. Unfortunately, the immunosuppressive armament also induces harmful bystander effects in neighboring cells by impairing host tissue homeostasis. For instance, TGF-β signaling can trigger many age-related degenerative changes, e.g., cellular senescence, fibrosis, osteoporosis, muscle atrophy, and the degeneration of the extracellular matrix. In addition, changes in the levels of ROS, RNS, and the metabolites of the kynurenine pathway can impair tissue homeostasis. This review will examine in detail the harmful effects of the immunosuppressive cells on host tissues. It seems that this age-related immunosuppression prevents inflammatory damage but promotes the tissue degeneration associated with aging and age-related diseases. Key messages • Low-grade inflammation is associated with the aging process and age-related diseases. • Persistent inflammation activates compensatory immunosuppression with aging. • The numbers of immunosuppressive cells increase with aging and age-related diseases. • Immunosuppressive mechanisms evoke harmful bystander effects in host tissues. • Immunosuppression promotes tissue degeneration with aging and age-related diseases.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
L Duong ◽  
HG Radley ◽  
B Lee ◽  
DE Dye ◽  
FJ Pixley ◽  
...  

AbstractOlder age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10, which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a significant influence on macrophage function and further impact the severity of age-related diseases in which macrophages are known to play a key role. In this brief review we summarise studies describing changes to inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohito Sato ◽  
Toshio Enoki ◽  
Yoko Karasawa ◽  
Hideaki Someya ◽  
Manzo Taguchi ◽  
...  

BackgroundNeovascular age-related macular degeneration (nAMD) is a leading cause of blindness in older people. Low-grade inflammation is well-known as one of the pathogenic mechanisms in nAMD. Anti-vascular endothelial growth factor (VEGF) therapy is the first-line treatment for nAMD, although macula atrophy (MA) developed under anti-VEGF therapy causes irreversible visual function impairment and is recognized as a serious disorder. Here, we show specific expression patterns of aqueous humor (AH) cytokines in nAMD eyes developing MA under intravitreal injection of aflibercept (IVA) as an anti-VEGF antibody and present predictive cytokines as biomarkers for the incidence of MA in nAMD eyes under IVA treatment.MethodsTwenty-eight nAMD patients received three consecutive monthly IVA, followed by a pro re nata regimen for 2 years. AH specimens were collected before first IVA (pre-IVA) and before third IVA (post-IVA). AH cytokine levels, visual acuity (VA), and central retinal thickness (CRT) were measured.ResultsTwo-year incidence of MA was 21.4%. In nAMD eyes developing MA [MA (+) group], pre-IVA levels of monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1β, VEGF and post-IVA level of MCP-1 were higher than those in nAMD eyes without MA [MA (−) group]. In hierarchical cluster analysis, pre-IVA MCP-1 and VEGF were grouped into the same subcluster, as were post-IVA MCP-1 and CRT. In principal component analysis, principal component loading (PCL) of pre-IVA interferon-γ-inducible protein 10 (IP-10) was 0.61, but PCL of post-IVA IP-10 decreased to −0.09. In receiver operating characteristic analysis and Kaplan–Meier curves, pre-IVA MCP-1, MIP-1β, and VEGF and post-IVA interleukin-6, MCP-1, and MIP-1β were detected as predictive factors for MA incidence. In 2-year clinical course, changes of VA in groups with high levels of pre-IVA MIP-1β (over 39.9 pg/ml) and VEGF (over 150.4 pg/ml) were comparable to those in MA (+) group.ConclusionSubstantial loss of IP-10 effects and persistent inflammation contribute to incidence of MA, and screening of AH cytokine levels could be a useful method to predict MA incidence in nAMD eyes under anti-VEGF therapy.


2015 ◽  
Vol 114 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Anne M. Minihane ◽  
Sophie Vinoy ◽  
Wendy R. Russell ◽  
Athanasia Baka ◽  
Helen M. Roche ◽  
...  

The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.


2021 ◽  
Vol 20 (2) ◽  
pp. 10-18
Author(s):  
P. A. Zinovev ◽  
I. Zh. Shubina ◽  
V. V. Yamenskov ◽  
M. V. Kiselevskiy

In 2000 Claudio Franceschi first used the term “inflammageing” derived from the English words “inflammation” and “age”. This term refers to the development of chronic inflammation in the elderly, which is characterized by a high level of pro-inflammatory markers of cells and tissues. Cellular aging can be triggered by a variety of factors: critical telomere shortening, permanent DNA damage, epigenetic damage, mitochondrial dysfunction, and an increase in the number of molecular fragments associated with cell damage.A large number of markers have been found to reveal the pro-inflammatory status, such as interleukin (IL) 1, IL-1ra (IL-1 receptor antagonist protein), IL-6, -8, -13, -18, C-reactive protein, interferons α, β, transforming growth factor β, tumor necrosis factor α and its soluble receptors and SAA-1 (serum amyloid А1). The molecular mechanisms associated with aging and age-related diseases are not clear yet, while sluggish chronic inflammation is one of the leading mechanisms for the atherosclerosis development. Remodeling of the immune system with the increasing production of pro-inflammatory cytokines and NLRP3 inflammasomes also play a key role in the maintenance of chronic inflammation due to its ability to pick up a variety of age-related dangerous signals that trigger the immune response and subsequent inflammation and may act as a factor of the atherosclerosis development.Thus, pro-inflammatory factors of the immune system play an important role in pathogenesis of atherosclerosis,especially at an early stage, involving various mechanisms of action that boost atherosclerotic changes.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 300-300
Author(s):  
Marco Demaria

Abstract Aging is at the root of age-related diseases and therapies targeting basic age-associated mechanisms have the potential to extend healthy lifespan. A common feature of older organisms is the accumulation of senescent cells – cells that have irreversibly lost the capacity to undergo replication. Senescent cells are characterized by an irreversible cell cycle arrest and by the Senescence-Associated Secretory Phenotype (SASP), which include many tissue remodeling and pro-inflammatory factors. Senescent cells are intermittently present during embryogenesis and in young organisms. On the contrary senescent cells accumulate and persist in aging tissues. Significantly, these persistent senescent cells can drive low-grade chronic inflammation, and their genetic or pharmacological elimination is sufficient to delay a number of diseases and to improve health span. Here, I will discuss the mechanisms by which senescent cells can promote tissue aging and dysfunction and the potential of targeting senescent cells to delay human aging.


Sign in / Sign up

Export Citation Format

Share Document