scholarly journals Trehalose 6-phosphate signalling and impact on crop yield

2020 ◽  
Vol 48 (5) ◽  
pp. 2127-2137
Author(s):  
Matthew J. Paul ◽  
Amy Watson ◽  
Cara A. Griffiths

The domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion. Food security crops such as wheat and maize have seen large changes compared with early progenitors. Amongst processes that have been altered in these crops, is the allocation of carbon resources to support larger grain yield (grain number and size). In wheat, reduction in stem height has enabled diversion of resources from stems to ears. This has freed up carbon to support greater grain yield. Green revolution genes responsible for reductions in stem height are known, but a unifying mechanism for the active regulation of carbon resource allocation towards and within sinks has however been lacking. The trehalose 6-phosphate (T6P) signalling system has emerged as a mechanism of resource allocation and has been implicated in several crop traits including assimilate partitioning and improvement of yield in different environments. Understanding the mode of action of T6P through the SnRK1 protein kinase regulatory system is providing a basis for a unifying mechanism controlling whole-plant resource allocation and source-sink interactions in crops. Latest results show it is likely that the T6P/SnRK1 pathway can be harnessed for further improvements such as grain number and grain filling traits and abiotic stress resilience through targeted gene editing, breeding and chemical approaches.

1977 ◽  
Vol 4 (5) ◽  
pp. 785 ◽  
Author(s):  
I Sofield ◽  
LT Evans ◽  
MG Cook ◽  
IF Wardlaw

Controlled-environment conditions were used to examine the effects of cultivar and of temperature and illuminance after anthesis on grain setting and on the duration and rate of grain growth. After an initial lag period, which did not differ greatly between cultivars, grain dry weight increased linearly under most conditions until final grain weight was approached. Growth rate per grain depended on floret position within the ear, varied between cultivars (those with larger grains at maturity having a faster rate), and increased with rise in temperature. With cultivars in which grain number per ear was markedly affected by illuminance, light had relatively little effect on growth rate per grain. With those in which grain number was less affected by illuminance, growth rate per grain was highly responsive to it, especially in the more distal florets. In both cases there was a close relation between leaf photosynthetic rate as influenced by illuminance, the rate of grain growth per ear, and final grain yield per ear. The duration of linear grain growth, on the other hand, was scarcely influenced by illuminance, but was greatly reduced as temperature rose, with pronounced effects on grain yield per ear. Cultivars differed to some extent in their duration of linear growth, but these differences accounted for less of the difference in final weight per grain than did those in rate of grain growth. Under most conditions the cessation of grain growth did not appear to be due to lack of assimilates.


Author(s):  
Jyotirmaya Mathan ◽  
Anuradha Singh ◽  
Aashish Ranjan

Abstract The source-sink relationship is key to overall crop performance. Detailed understanding of the factors that determine source-sink dynamics is imperative for the balance of biomass and grain yield in crop plants. We investigated the differences in the source-sink relationship between a cultivated rice Oryza sativa cv. Nipponbare and a wild rice Oryza australiensis that show striking differences in biomass and grain yield. Oryza australiensis, accumulating higher biomass, not only showed higher photosynthesis per unit leaf area but also exported more sucrose from leaves than Nipponbare. However, grain features and sugar levels suggested limited sucrose mobilization to the grains in the wild rice due to vasculature and sucrose transporter functions. Low cell wall invertase activity and high sucrose synthase cleavage activity followed by higher expression of cellulose synthase genes in Oryza australiensis stem utilized photosynthates preferentially for the synthesis of structural carbohydrates, resulting in high biomass. In contrast, the source-sink relationship favored high grain yield in Nipponbare via accumulation of transitory starch in the stem, due to higher expression of starch biosynthetic genes, which is mobilized to panicles at the grain filling stage. Thus, vascular features, sucrose transport, and functions of sugar metabolic enzymes explained the differences in the source-sink relationship between Nipponbare and Oryza australiensis.


1971 ◽  
Vol 77 (3) ◽  
pp. 445-452 ◽  
Author(s):  
R. W. Willey ◽  
R. Holliday

SUMMARYTwo barley experiments are described in which a range of plant populations were shaded during different periods of development. Shading during the ear development period caused considerable reductions in grain yield, largely by reducing the number of grains per ear. Shading during the grain-filling period caused no reduction in grain yield. It is suggested that under conditions of these experiments there was probably a potential surplus of carbohydrate available for grain filling and that grain yield was largely determined by the storage capacity of the ears. The importance of the number of grains per ear as an indicator of individual ear capacity is emphasized.The effects of plant population on grain yield and its components are also examined. It is concluded that the number of grains per ear is the component having greatest influence on the decrease in grain yield at above-optimum populations and attention is again drawn to the possible importance of ear capacity. It is argued that on an area basis the number of grains per unit area may give a good indication of ear capacity. Examination of this parameter shows a close relationship with grain yield per unit area for both the shading and population treatments. It is particularly evident that a decrease in grain yield at high populations was associated with a comparable decrease in the number of grains per unit area. It is suggested that this decrease in grain number may be due to a lower production of total dry matter during ear development rather than an unfavourable partitioning of this dry matter between the ear and the rest of the plant. This lower production of total dry matter is attributed to the crop growth rates of the higher populations having reached their peak and then having declined before the end of the ear development period. This crop growth rate pattern, through its effect on grain number per unit area, is put forward as the basic reason why, in the final crop, grain yield per unit area decreases at above-optimum populations.


2010 ◽  
Vol 56 (No. 5) ◽  
pp. 218-227 ◽  
Author(s):  
A. Madani ◽  
A. Shirani-Rad ◽  
A. Pazoki ◽  
G. Nourmohammadi ◽  
R. Zarghami ◽  
...  

The experiments were laid out to understand the mechanisms causing yield limitations imposed by post-anthesis water and nitrogen deficiencies in plants with modified source-sink ratios. Two soil-water regimes were allotted to the main plots. At anthesis, three levels of N were applied: none, 25% and 50% of total the N supply. Spike-halving caused reduction in grain yield at both water regimes and all N supply levels, showing that the reduction in grain number can not be compensated by a higher individual grain weight. Sink reduction by trimming 50% of the spikelets reduced grain number per ear by 38.5% and increased individual grain weight by 12.0%, which shows the plasticity in grain weight and grain set of wheat if sufficient assimilates are available. Additional nitrogen supply at anthesis had no significant effect on the total aboveground biomass, but increased grain yield through more allocation of dry matter to grains. Our findings suggest that for rainfed wheat with optimum N supply and supplemental irrigation, wheat growers should choose cultivars with a high grain number per ear and manage the crop to increase grain number per unit of land (sink capacity).


2006 ◽  
Vol 57 (2) ◽  
pp. 227 ◽  
Author(s):  
Daniel F. Calderini ◽  
M. P. Reynolds ◽  
G. A. Slafer

Source limitation during grain filling is important for both management and breeding strategies of grain crops. There is little information on the sensitivity of grain weight of temperate cereals to variations in source–sink ratios, and no studies are available on the comparative behaviour of temperate cereals growing together in the same experiment. The objective of the current study was to evaluate, under field conditions, the response of grain weight to different source–sink ratios during grain filling in high-yielding cultivars of bread wheat, durum wheat, and triticale at 2 contrasting locations. Two experiments were carried out at C. Obregon and El Batan in Mexico. In each location, 6 genotypes (2 bread wheat, 2 durum wheat, 2 triticale) were evaluated. A week after anthesis, 2 source–sink (control and halved spikes) treatments were imposed. Location and genotype significantly (P < 0.01) affected grain yield and components. Significant grain weight increases (P < 0.05) were found only in 2 cases in El Batan. The highest response of 17% was found in triticale, with less than 10% in most of the other genotypes. The effect of genotype and location is discussed.


1995 ◽  
Vol 46 (1) ◽  
pp. 61 ◽  
Author(s):  
T Tangpremsri ◽  
S Fukai ◽  
KS Fischer

From 47 S2 lines which had been extracted from a random mated population of sorghum, eight lines for a glasshouse experiment and four lines for a field experiment were divergently selected for variation in osmotic adjustment, and were grouped into two, High and Low osmotic adjustment (OA). Both the glasshouse and field experiments examined whether osmotic adjustment modified the plants' response to soil water deficit and also whether grain sink demand for assimilates, varied by removal of 50% spikelets, affected osmotic adjustment. In each experiment, there were well-watered control and water stress treatments. In both experiments, the dawn osmotic potential in the High OA group was always lower than in the Low OA group under water limiting conditions, and the difference was significant after anthesis. The difference in osmotic potential was about 0.1 MPa in the field and up to 0.25 MPa in the glasshouse. In the glasshouse experiment, removal of 50% spikelets at anthesis significantly decreased osmotic potential during grain filling, suggesting that osmotic adjustment is influenced by the availability of assimilates in the leaves. Under well-watered conditions, the two groups behaved very similarly in terms of maximum leaf area, green leaf area retention during grain filling, total dry matter production, grain yield and grain number in both experiments. Under water-limiting conditions, the High OA group produced larger maximum leaf area and had better leaf retention during grain filling. Despite similar water use, total dry matter was also significantly higher in the High OA group though the difference was small. Grain number was also greater in this group in both experiments, whereas grain yield was significantly higher in the High OA group in the field, but not in the glasshouse where severe water stress developed more rapidly. It is concluded that the adverse effect of water stress can be reduced by adopting sorghum genotypes with high osmotic adjustment. However, selection for high osmotic adjustment needs to ensure that osmotic adjustment is not solely due to small head size.


2009 ◽  
Vol 147 (6) ◽  
pp. 657-667 ◽  
Author(s):  
M. M. ACRECHE ◽  
G. A. SLAFER

SUMMARYWheat yield and grain nitrogen concentration (GNC; mg N/g grain) are frequently negatively correlated. In most growing conditions, this is mainly due to a feedback process between GNC and the number of grains/m2. In Mediterranean conditions, breeders may have produced cultivars with conservative grain set. The present study aimed at clarifying the main physiological determinants of grain nitrogen accumulation (GNA) in Mediterranean wheat and to analyse how breeding has affected them. Five field experiments were carried out in north-eastern Spain in the 2005/06 and 2006/07 growing seasons with three cultivars released at different times and an advanced line. Depending on the experiment, source-sink ratios during grain filling were altered by reducing grain number/m2 either through pre-anthesis shading (unshaded control or 0·75 shading only between jointing and anthesis) or by directly trimming the spikes after anthesis and before the onset of the effective grain filling period (un-trimmed control or spikes halved 7–10 days after anthesis). Grain nitrogen content (GN content; mg N/grain) decreased with the year of release of the genotypes. As the number of grains/m2 was also increased by breeding there was a clear dilution effect on the amount of nitrogen allocated to each grain. However, the increase in GN content in old genotypes did not compensate for the loss in grain nitrogen yield (GNY) due to the lower number of grains/m2. GN content of all genotypes increased (increases ranged from 0·13 to 0·40 mg N/grain, depending on experiment and genotype) in response to the post-anthesis spike trimming or pre-anthesis shading. The degree of source-limitation for GNA increased with the year of release of the genotypes (and thus with increases in grain number/m2) from 0·22 (mean of the four manipulative experiments) in the oldest cultivar to 0·51 (mean of the four manipulative experiments) in the most modern line. It was found that final GN content depended strongly on the source-sink ratio established at anthesis between the number of grains set and the amount of nitrogen absorbed at this stage. Thus, Mediterranean wheat breeding that improved yield through increases in grain number/m2 reduced the GN content by diluting a rather limited source of nitrogen into more grains. This dilution effect produced by breeding was further confirmed by the reversal effect produced by grain number/m2 reductions due to either pre-anthesis shading or post-anthesis spike trimming.


2010 ◽  
Vol 61 (2) ◽  
pp. 162 ◽  
Author(s):  
Rosella Motzo ◽  
Francesco Giunta ◽  
Giovanni Pruneddu

Genetic advance in durum wheat (Triticum turgidum subsp. durum) grain yield in Italy has been achieved by bringing forward flowering time, achieving a larger number of grains per unit area, and altering the pattern of senescence. The performance, in the absence of any moisture stress, of a set of 6 Italian durum wheat cultivars released over the past 100 years was compared under 4 environments and 2 nitrogen rates, to ascertain whether the changes brought about by selection for yield have also indirectly affected the rate and duration of grain filling. Grain filling lasted 35–36 days in all cultivars except ‘Ichnusa’ (39 days), although modern cultivars flowered earlier than older ones. The lack of any breeding effect on grain-filling duration also meant that the later old cultivars were not negatively affected by the higher ambient temperatures during their grain filling. The maximum rate of grain filling ranged from 2.4 to 3.3 mg/day and showed a highly significant negative correlation with the year of cultivar release (r = –0.91*). The variation in grain weight, significant but not correlated with the year of release, was associated with the rate of grain filling, which was in turn related to the grain number per unit area. A compensating variability still exists among modern Italian cultivars in both grain number and grain-filling rate, which demonstrates that durum wheat grain yield can be increased while also preserving high grain weights.


2010 ◽  
Vol 61 (10) ◽  
pp. 852 ◽  
Author(s):  
Heping Zhang ◽  
Neil C. Turner ◽  
Michael L. Poole

Grain yield depends on the number of grains per unit area (sink) and the availability of assimilates (source) to fill these grains. The aim of the current work was to determine whether wheat yield in the high-rainfall zone of south-western Australia is limited in current cultivars by the size of the sink or by the assimilates available for grain filling. Three wheat cultivars (Calingiri, Chara and Wyalkatchem) and two breeding lines (HRZ216 and HRZ203) were grown in four replicates in the field from 2005 to 2007. Dry matter and water soluble carbohydrates (WSC) at anthesis and maturity were measured and used to determine the source and sink balance of the crop. In 2007, three further treatments were applied to manipulate the sink–source relationships: (i) spikelets were removed on main stems to increase the source : sink ratio; (ii) incoming solar radiation was reduced by 40% by shading after anthesis to reduce the availability of assimilates to grains; and (iii) supplemental irrigation was used to maintain the capacity for photosynthesis by an improved water supply during grain filling. The source–sink balance of the crops showed that the potential source was 25% greater than the actual grain yield in average and above-average seasons (2005 and 2007), suggesting that sink size, represented by the number of grain per unit area, was a limiting factor to yield potential. However, the source may have become a limiting factor in a drought season (2006). The grain yield increased with increased number of grains/m2 and kernel weight remained relatively stable even when grain number increased from 7000 to 16 000 per m2. The removal of half of the spikelets on the main stem did not increase kernel mass of the remaining grains and an additional 33 mm of irrigation water did not increase grain yield, but significantly (P < 0.05) increased WSC left in stems and leaf sheaths at maturity. Shading after anthesis did not significantly reduce grain yield of the current cultivars Calingiri and Wyalkatchem, but it reduced grain yield by 23–25% (P < 0.05) in Chara and HRZ203. The source–sink balance over three seasons and three independent experiments in 2007 suggested that the yield of the current wheat cultivars is more sink- than source-limited and that breeding wheat with a larger sink size than in the current cultivars may lift the yield potential of wheat in the high-rainfall zone of south-western Australia.


2020 ◽  
Author(s):  
Jyotirmaya Mathan ◽  
Anuradha Singh ◽  
Aashish Ranjan

AbstractThe source-sink relationship is key to overall crop performance. Detailed understanding of the factors that determine source-sink dynamics is imperative for the balance of biomass and grain yield in a crop plant. We investigated the differences in the source-sink relationship between a cultivated rice Oryza sativa cv. Nipponbare and a wild rice Oryza australiensis that show striking differences in biomass and grain yield. The wild rice, accumulating higher biomass, was not only photosynthetically efficient but also had efficient sucrose export from leaves. However, sucrose mobilization to the grains was limited due to impaired vasculature and sucrose transporter functions at the reproductive tissues of the wild rice. High cleavage activity of Sucrose Synthase followed by higher expression of Cellulose Synthase genes in the wild rice stem efficiently utilized photosynthates for the synthesis of structural carbohydrates, resulting in high biomass. In contrast, the source-sink relationship favored high grain yield in Nipponbare via accumulation of transitory starch in the stem, due to higher expression of starch biosynthetic genes, which is mobilized to panicles at the grain filling stage. Thus, sucrose transport along with functions of key sugar metabolic enzymes explained the differences in the source-sink relationship between the selected cultivated and wild rice.


Sign in / Sign up

Export Citation Format

Share Document