Effect of parenteral nutrition on protein turnover in endotoxaemic rats

1989 ◽  
Vol 76 (6) ◽  
pp. 659-666 ◽  
Author(s):  
S. A. Ash ◽  
G. E. Griffin

1. Intravenous infusion of endotoxin into rats over 18 h caused a reduction in food intake to 20% of normal levels, weight loss, hypoalbuminaemia and a fall in rates of protein synthesis in vivo in heart and skeletal muscle. 2. Measurements of protein turnover in vitro in skeletal muscle of endotoxaemic animals, showed a 50% fall in protein synthesis rates and a 200% increase in rates of protein degradation. 3. Total parenteral nutrition was only partially able to reverse endotoxin-induced weight loss. Total parenteral nutrition did not reverse endotoxin-induced catabolism in cardiac or skeletal muscle, but was able to reverse the catabolism of protein in skeletal muscle produced by starvation. 4. Endotoxin treatment elevated rates of protein synthesis in vivo in liver. The combination of parenteral nutrition and endotoxaemia further increased the rate of protein synthesis in the liver. Parenteral nutrition did not influence endotoxin-induced hypoalbuminaemia.

1991 ◽  
Vol 81 (2) ◽  
pp. 215-222 ◽  
Author(s):  
M. Salleh M. Ardawi

1. The effect of total parenteral nutrition with or without glutamine enrichment was studied in septic rats after 4 days of treatment. 2. Septic rats treated with glutamine-enriched total parenteral nutrition survived sepsis significantly better than other TPN-treated septic rats: the cumulative percentage of deaths over 4 days in septic rats treated with glutamine-enriched total parenteral nutrition was 25% compared with 55% in septic rats given total parenteral nutrition without glutamine and 70% in septic rats given glucose. 3. Glutamine-enriched total parenteral nutrition resulted in improved nitrogen balance in septic rats: the cumulative nitrogen balance over the 4 days of treatment was the least negative as compared with other groups of septic rats. 4. The rate of loss of intracellular glutamine in skeletal muscle was markedly decreased (P < 0.001) in response to glutamine-enriched total parenteral nutrition in septic rats. 5. The rate of protein synthesis was increased (21.2%) and the rate of protein degradation was decreased (35.5%) in response to glutamine-enriched total parenteral nutrition in septic rats. 6. It is concluded that the administration of glutamine-enriched total parenteral nutrition is beneficial to septic rats and possibly to septic patients.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3195
Author(s):  
Yo-Han Han ◽  
Jeong-Geon Mun ◽  
Hee Dong Jeon ◽  
Dae Hwan Yoon ◽  
Byung-Min Choi ◽  
...  

Background: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. Methods: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. Results: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. Conclusion: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.


1989 ◽  
Vol 62 (2) ◽  
pp. 269-284 ◽  
Author(s):  
Inge Dôrup ◽  
Torben Clausen

The effects of potassium deficiency on growth, K content and protein synthesis have been compared in 4–13-week-old rats. When maintained on K-deficient fodder (1 mmol/kg) rats ceased to grow within a few days, and the incorporation of [3H]leucine into skeletal muscle protein in vivo was reduced by 28–38%. Pair-feeding experiments showed that this inhibition was not due to reduced energy intake. Following 14 d on K-deficient fodder, there was a further reduction (39–56 %) in the incorporation of [3H]leucine into skeletal muscle protein, whereas the incorporation into plasma, heart and liver proteins was not affected. The accumulation of the non-metabolized amino acid α-aminoisobutyric acid in the heart and skeletal muscles was not reduced. The inhibitory effect of K deficiency on 3H-labelling of muscle protein was seen following intraperitoneal (10–240 min) as well as intravenous (10 min) injection of [3H]leucine. In addition, the incorporation of [3H]phenylalanine into skeletal muscle protein was reduced in K-depleted animals. Following acute K repletion in vivo leading to complete normalization of muscle K content, the incorporation of [3H]leucine into muscle protein showed no increase within 2 h, but reached 76 and 104% of the control level within 24 and 72 h respectively. This was associated with a rapid initial weight gain, but normal body-weight was not reached until after 7 weeks of K repletion. Following 7 d on K-deficient fodder the inhibition of growth and protein synthesis was closely correlated with the K content of the fodder (1–40 mmol/kg) and significant already at modest reductions in muscle K content. In vitro experiments with soleus muscle showed a linear relationship between the incorporation of [3H]leucine into muscle protein and K content, but the sensitivity to cellular K deficiency induced in vitro was much less pronounced than that induced in vivo. Thus, in soleus and extensor digitorum longus (EDL) muscles prepared from K-deficient rats, the incorporation of [3H]leucine was reduced by 30 and 47 % respectively. This defect was completely restored by 24 h K repletion in vivo. It is concluded that in the intact organism protein synthesis and growth are very sensitive to dietary K deficiency and that this can only partly be accounted for by the reduction in cellular K content per se. The observations emphasize the need for adequate K supplies to ensure optimum utilization of food elements for protein synthesis and growth.


1998 ◽  
Vol 79 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Isabelle Savary ◽  
Elisabeth Debras ◽  
Dominique Dardevet ◽  
Claire Sornet ◽  
Pierre Capitan ◽  
...  

This study was carried out to analyse glucocorticoid-induced muscle wasting and subsequent recovery in adult (6-8 months) and old (18-24 months) rats because the increased incidence of various disease states results in hypersecretion of glucocorticoids in ageing. Adult and old rats received dexamethasone in their drinking water for 5 or 6 d and were then allowed to recover for 3 or 7 d. As dexamethasone decreased food intake, all groups were pair-fed to dexamethasonetreated old rats (i.e. the group that had the lowest food intake). At the end of the treatment, adult and old rats showed significant increases in blood glucose and plasma insulin concentrations. This increase disappeared during the recovery period. Protein synthesis of different muscles was assessed in vivo by a flooding dose of [13C]valine injected subcutaneously 50 min before slaughter. Dexamethasone induced a significant decrease in protein synthesis in fast-twitch glycolytic and oxidative glycolytic muscles (gastrocnemius, tibialis anterior, extensor digitorum longus). The treatment affected mostly ribosomal efficiency. Adult dexamethasone-treated rats showed an increase in protein synthesis compared with their pair-fed controls during the recovery period whereas old rats did not. Dexamethasone also significantly decreased protein synthesis in the predominantly oxidative soleus muscle but only in old rats, and increased protein synthesis in the heart of adult but not of old rats. Thus, in skeletal muscle, the catabolic effect of dexamethasone is maintained or amplified during ageing whereas the anabolic effect in heart is depressed. These results are consistent with muscle atrophy occurring with ageing.


1978 ◽  
Vol 234 (1) ◽  
pp. E38 ◽  
Author(s):  
K E Flaim ◽  
J B Li ◽  
L S Jefferson

The role of growth hormone in regulating protein turnover was examined in a perfused preparation of rat skeletal muscle. The perfused muscle maintained in vivo levels of ATP and creatine phosphate and exhibited constant rates of oxygen consumption and protein synthesis. Hypophysectomy reduced the rate of protein synthesis, the concentration of RNA, and the efficiency of protein synthesis in gastrocnemius muscle to 30, 46, and 66 percent of normal, respectively. In vivo treatment of hypophysectomized (hypox) rats with bovine growth hormone (250 microgram/day for 5 days) resulted in small increases in protein synthesis and RNA, whereas synthesis/RNA was returned to near normal. Elevation of ribosomal subunits in psoas muscle indicated an inhibition of peptide-chain initiation in hypox rats that was reversed by in vivo growth hormone treatment. Thus, hypox rats exhibited both a decreased capacity and a decreased efficiency of protein synthesis. Growth hormone replacement primarily increased efficiency of protein synthesis. The rate of protein degradation and the activity of cathepsin D in gastrocnemius muscle were decreased by hypophysectomy. Growth hormone treatment had no significant effect on degradation.


1992 ◽  
Vol 262 (6) ◽  
pp. C1471-C1477 ◽  
Author(s):  
J. A. Chromiak ◽  
H. H. Vandenburgh

Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.


1975 ◽  
Vol 26 (6) ◽  
pp. 1063
Author(s):  
LEA Symons ◽  
WO Jones

Incorporation of radioisotopically labelled L-leucine into skeletal muscle proteins was measured in vivo and in vitro, and into liver proteins in vivo in three groups of sheep: (1) infected by Trichostrongylus colubriformis, (2) uninfected, pair-fed with the infected animals, (3) uninfected, fed ad lib. Incorporation of [14C]L-leucine by an homogenate of wool follicles from infected and uninfected sheep was also measured. Incorporation of leucine by muscle, and hence muscle protein synthesis, was equally depressed in the anorexic infected sheep losing weight, and in pair-fed animals, whether measured in vivo or in vitro, or expressed in terms of either RNA or DNA. Incorporation into protein was elevated equally in vivo in the livers of the infected and pair-fed sheep when expressed in terms of content of tissue nitrogen, but not in terms of cither nucleic acid. Incorporation by the wool follicular homogenate was appreciably depressed by the infection and is consistent with the poor wool growth in nematode infections. These results show that the same depression of skeletal muscle and, possibly, elevation of liver protein synthesis occur in a ruminant as were reported earlier for laboratory monogastric animals with intestinal nematode infections. Pair-feeding uninfected animals in both this and the earlier experiments emphasized the importance of anorexia as a major cause of these effects on protein synthesis. The importance of these effects upon production is discussed briefly.


1994 ◽  
Vol 267 (1) ◽  
pp. E183-E186 ◽  
Author(s):  
P. De Feo ◽  
E. Volpi ◽  
P. Lucidi ◽  
G. Cruciani ◽  
F. Santeusanio ◽  
...  

The antimalaric drug chloroquine is a well known inhibitor of lysosomal proteolysis in vitro. The present study tests the hypothesis that therapeutic doses of the drug decrease proteolysis also in vivo in humans. Leucine kinetics were determined in 20 healthy volunteers given 12 and 1.5 h before the studies 250 and 500 mg, respectively, of chloroquine phosphate (n = 10) or similar tablets of placebo (n = 10). Chloroquine reduced the rates of leucine appearance, a measure of whole body proteolysis, from 2.45 +/- 0.08 to 2.19 +/- 0.08 mumol.kg-1.min-1 (P = 0.038) and those of nonoxidative leucine disposal, an estimate of whole body protein synthesis, from 2.16 +/- 0.08 to 1.95 +/- 0.06 mumol.kg-1.min-1 (P = 0.050). The drug resulted also in a marginally significant (P = 0.051) decrement in the plasma concentrations of glucose. The effects of chloroquine on protein turnover might be potentially useful in counteracting protein wasting complicating several catabolic diseases, whereas those on glucose metabolism can explain the sporadic occurrence of severe hypoglycemic episodes in malaria patients chronically treated with this drug.


Sign in / Sign up

Export Citation Format

Share Document