Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo

1992 ◽  
Vol 263 (4) ◽  
pp. H1234-H1242 ◽  
Author(s):  
C. D. Kontos ◽  
E. P. Wei ◽  
J. I. Williams ◽  
H. A. Kontos ◽  
J. T. Povlishock

We used a cytochemical technique for the detection of superoxide in cerebral inflammation and ischemia-reperfusion in anesthetized cats. The technique is based on the oxidation of Mn2+ to Mn3+ by superoxide; Mn3+, in turn, oxidizes diaminobenzidine. The oxidized diaminobenzidine forms an osmiophilic electron-dense product that is detected by electron microscopy. The reagents, manganese chloride (2 mM) and diaminobenzidine (2 mg/ml), were placed topically on the brain surface of anesthetized cats equipped with cranial windows. Inflammation was induced by topical carrageenan with or without phorbol 12-myristate 13-acetate to activate leukocytes. In inflammation, superoxide was detected in the plasma membrane and in the phagocytic vacuoles of leukocytes. In ischemia-reperfusion, superoxide was identified in the meninges in association with blood vessels. It was located primarily in the extracellular space and occasionally in endothelial and vascular smooth muscle cells. In both inflammation and ischemia, the reaction product was eliminated by superoxide dismutase or by the omission of either manganese or diaminobenzidine. It was unaffected by sodium azide, which inhibits peroxidases. No superoxide was detected in the brain parenchyma. The findings confirm the generation of superoxide is cerebral ischemia-reperfusion and show that it is produced in cerebral vessels.

2017 ◽  
Vol 131 (22) ◽  
pp. 2745-2752 ◽  
Author(s):  
Howard Dobson ◽  
Matthew MacGregor Sharp ◽  
Richard Cumpsty ◽  
Theodore P. Criswell ◽  
Tyler Wellman ◽  
...  

Although there are no conventional lymphatic vessels in the brain, fluid and solutes drain along basement membranes (BMs) of cerebral capillaries and arteries towards the subarachnoid space and cervical lymph nodes. Convective influx/glymphatic entry of the cerebrospinal fluid (CSF) into the brain parenchyma occurs along the pial-glial BMs of arteries. This project tested the hypotheses that pial-glial BM of arteries are thicker in the midbrain, allowing more glymphatic entry of CSF. The in vivo MRI and PET images were obtained from a 4.2-year-old dog, whereas the post-mortem electron microscopy was performed in a 12-year-old dog. We demonstrated a significant increase in the thickness of the pial-glial BM in the midbrain compared with the same BM in different regions of the brain and an increase in the convective influx of fluid from the subarachnoid space. These results are highly significant for the intrathecal drug delivery into the brain, indicating that the midbrain is better equipped for convective influx/glymphatic entry of the CSF.


Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii110-ii111
Author(s):  
Kira Downey ◽  
Bindu Hegde ◽  
Zinal Chheda ◽  
Jason Zhang ◽  
Hideho Okada

Abstract The lack of conventional lymphatic drainage to and from the brain parenchyma restricts the capacity of the peripheral immune system to recognize and respond to glioma antigens. In some peripheral solid tumor types and central nervous system autoimmunity, the spontaneous development of tertiary lymphoid structures (TLS) with varying degrees of organization have been observed in human patients and mice following chronic inflammation. In the cancer setting, presence of TLS are generally associated with improved prognosis, especially when they are characterized by intratumoral infiltration of CD8+ T-cells. We aimed to induce the development of TLS in vivo, utilizing our SB28 glioblastoma model which is sparsely infiltrated by lymphocytes. As a proof-of-concept study, we stably transduced SB28 with a combination of several TLS-stimulating factors that we’ve identified and injected these cells into the brain parenchyma of syngeneic C57BL/6J mice. A combination of the chemoattractant and lymphoid follicle-stimulating cytokines LIGHT, CCL21, IL-7, and IL-17 produced substantial infiltration of CD8+CD3+ T-cells into the tumor and nearby parenchyma. However, this combination was also associated with accelerated tumor growth. A modified gene combination including LIGHT, CCL21, and IL-7 promoted CD8+CD3+ T-cell infiltration by flow cytometry, T-cell clustering by immunofluorescence analysis, and inhibited tumor burden compared with the control as measured by bioluminescent imaging. There was also evidence of increased lymphatic vasculature around the margins of T-cell clustering as demonstrated by LYVE-1 staining. Together, these analyses highlight a role for these factors in stimulating the recruitment and clustering of T-cell to the glioblastoma microenvironment in a TLS-like phenomenon. Future studies will evaluate whether the recruitment of other lymphocytes and stromal cells to these TLS-like clusters can promote T-cell memory and persistence. Ultimately, we aim to provide these factors utilizing a gene delivery method that will prove translatable to the clinic and complementary to existing T-cell therapies.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


Author(s):  
Taïssia Lelekov-Boissard ◽  
Guillemette Chapuisat ◽  
Jean-Pierre Boissel ◽  
Emmanuel Grenier ◽  
Marie-Aimée Dronne

The inflammatory process during stroke consists of activation of resident brain microglia and recruitment of leucocytes, namely neutrophils and monocytes/macrophages. During inflammation, microglial cells, neutrophils and macrophages secrete inflammatory cytokines and chemokines, and phagocytize dead cells. The recruitment of blood cells (neutrophils and macrophages) is mediated by the leucocyte–endothelium interactions and more specifically by cell adhesion molecules. A mathematical model is proposed to represent the dynamics of various brain cells and of immune cells (neutrophils and macrophages). This model is based on a set of six ordinary differential equations and explores the beneficial and deleterious effects of inflammation, respectively phagocytosis by immune cells and the release of pro-inflammatory mediators and nitric oxide (NO). The results of our simulations are qualitatively consistent with those observed in experiments in vivo and would suggest that the increase of phagocytosis could contribute to the increase of the percentage of living cells. The inhibition of the production of cytokines and NO and the blocking of neutrophil and macrophage infiltration into the brain parenchyma led also to the improvement of brain cell survival. This approach may help to explore the respective contributions of the beneficial and deleterious roles of the inflammatory process in stroke, and to study various therapeutic strategies in order to reduce stroke damage.


2019 ◽  
Vol 20 (10) ◽  
pp. 2435 ◽  
Author(s):  
Tetsuya Takahashi ◽  
Takayoshi Shimohata

Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood–brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.


Sign in / Sign up

Export Citation Format

Share Document