Autoimmune-mediated renal disease and hypertension

2021 ◽  
Vol 135 (17) ◽  
pp. 2165-2196
Author(s):  
Erika I. Boesen ◽  
Rahul M. Kakalij

Abstract Hypertension is a major risk factor for cardiovascular disease, chronic kidney disease (CKD), and mortality. Troublingly, hypertension is highly prevalent in patients with autoimmune renal disease and hastens renal functional decline. Although progress has been made over the past two decades in understanding the inflammatory contributions to essential hypertension more broadly, the mechanisms active in autoimmune-mediated renal diseases remain grossly understudied. This Review provides an overview of the pathogenesis of each of the major autoimmune diseases affecting the kidney that are associated with hypertension, and describes the current state of knowledge regarding hypertension in these diseases and their management. Specifically, discussion focuses on Systemic Lupus Erythematosus (SLE) and Lupus Nephritis (LN), Immunoglobulin A (IgA) Nephropathy, Idiopathic Membranous Nephropathy (IMN), Anti-Neutrophil Cytoplasmic Antibody (ANCA)-associated glomerulonephritis, and Thrombotic Thrombocytopenic Purpura (TTP). A summary of disease-specific animal models found to exhibit hypertension is also included to highlight opportunities for much needed further investigation of underlying mechanisms and novel therapeutic approaches.

2002 ◽  
Vol 283 (5) ◽  
pp. F861-F875 ◽  
Author(s):  
Saulo Klahr ◽  
Jeremiah Morrissey

Interstitial fibrosis has a major role in the progression of renal diseases. Several animal models are available for the study of renal fibrosis. The models of aminonucleoside-induced nephrotic syndrome, cyclosporin nephrotoxicity, and passive Heyman nephritis are characterized by molecular and cellular events similar to those that occur in obstructive nephropathy. Additionally, inhibition of angiotensin-converting enzyme exerts salutary effects on the progression of renal fibrosis in obstructive nephropathy. Unilateral ureteral obstruction (UUO) has emerged as an important model for the study of the mechanisms of renal fibrosis and also for the evaluation of the impact of potential therapeutic approaches to ameliorate renal disease. Many quantifiable pathophysiological events occur over the span of 1 wk of UUO, making this an attractive model for study. This paper reviews some of the ongoing studies that utilized a rodent model of UUO. Some of the findings of the animal model have been compared with observations made in patients with obstructive nephropathy. Most of the evidence suggests that the rodent model of UUO is reflective of human renal disease processes.


Author(s):  
Kate Wiles ◽  
Kate Bramham ◽  
Catherine Nelson-Piercy

This chapter describes the physiological adaptations to pregnancy in women with and without renal disease, reports pregnancy outcomes in women with both acute kidney injury and chronic kidney disease, and discusses a management strategy for antenatal and peripartum care. Acute kidney injury (AKI) is difficult to define in pregnancy because of the physiological increase in glomerular filtration. A normal creatinine can mask renal injury in pregnancy. This chapter considers important causes of AKI in pregnancy including pre-eclampsia, HELLP syndrome, thrombotic microangiopathy, acute fatty liver of pregnancy, systemic lupus erythematosus, urinary tract infection, and obstruction. The trend in the developed world for delaying pregnancy and the increasing prevalence of obesity mean that greater numbers of pregnancies will be complicated by chronic kidney disease. Maternal and fetal complications increase with worsening prepregnancy renal function including the development of pre-eclampsia, fetal growth restriction, premature delivery, and fetal loss. Prepregnancy counselling and the intrapartum management for women with lupus nephritis, immunoglobulin A nephropathy, polycystic kidney disease, and diabetic nephropathy are discussed. Renal replacement therapies in pregnancy including both dialysis and renal transplantation are considered, and practical guidance on renal biopsy, anaesthesia, and the pharmacology of renal disease in pregnancy is offered.


Author(s):  
Jo H. M. Berden ◽  
Jack F. M. Wetzels

Laboratory techniques (electrophoresis, indirect immunofluorescence, ELISA, and immunoblotting) required for immunological investigation of the patient with renal disease are described. Renal disease-related aspects of immunoglobulins (immunoglobulin A, paraproteins, cryoglobulins), complement, antinuclear antibodies, anti-C1q antibodies, antineutrophil cytoplasmic antibodies, anti-glomerular basement membrane antibodies, antipodocyte antibodies, antiphospholipid antibodies, and antimicrobial responses (streptococci, hepatitis C, hepatitis B) are reviewed. Laboratory assays which evaluate the immune response, in particular the identification of (auto)-antibodies are valuable tools in establishing a diagnosis and/or monitoring of the activity of the disease. Guidelines are given for immunological studies in patients with specific renal syndromes including nephrotic syndrome, rapidly progressive glomerulonephritis, systemic lupus erythematosus, and thrombotic microangiopathy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunjuan Yang ◽  
Jianmei Sun ◽  
Yipeng Tian ◽  
Haibo Li ◽  
Lili Zhang ◽  
...  

Systemic lupus erythematosus (SLE) is a common autoimmune connective tissue disease with unclear etiology and pathogenesis. Mesenchymal stem cell (MSC) and MSC derived extracellular vesicles (EVs) play important roles in regulating innate and adaptive immunity, which are involved in many physiological and pathological processes and contribute to the immune homeostasis in SLE. The effects of MSCs and EVs on SLE have been drawing more and more attention during the past few years. This article reviews the immunomodulatory effects and underlying mechanisms of MSC/MSC-EVs in SLE, which provides novel insight into understanding SLE pathogenesis and guiding the biological therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Wei-Xing Ma ◽  
Chun-Yan Li ◽  
Ran Tao ◽  
Xin-Ping Wang ◽  
Liang-Jun Yan

The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ji Huang ◽  
Diogo Ladeiras ◽  
Yi Yu ◽  
Xiu-Fen Ming ◽  
Zhihong Yang

The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18–24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1β, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II−/− mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II−/− mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.


2020 ◽  
Vol 27 (31) ◽  
pp. 5175-5188 ◽  
Author(s):  
Qingjun Pan ◽  
Yun Guo ◽  
Linjie Guo ◽  
Shuzhen Liao ◽  
Chunfei Zhao ◽  
...  

Systemic Lupus Erythematosus (SLE) is a chronic and relapsing heterogenous autoimmune disease that primarily affects women of reproductive age. Genetic and environmental risk factors are involved in the pathogenesis of SLE, and susceptibility genes have recently been identified. However, as gene therapy is far from clinical application, further investigation of environmental risk factors could reveal important therapeutic approaches. We systematically explored two groups of environmental risk factors: chemicals (including silica, solvents, pesticides, hydrocarbons, heavy metals, and particulate matter) and drugs (including procainamide, hydralazine, quinidine, Dpenicillamine, isoniazid, and methyldopa). Furthermore, the mechanisms underlying risk factors, such as genetic factors, epigenetic change, and disrupted immune tolerance, were explored. This review identifies novel risk factors and their underlying mechanisms. Practicable measures for the management of these risk factors will benefit SLE patients and provide potential therapeutic strategies.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Shiva Kalantari ◽  
Ameneh Jafari ◽  
Raheleh Moradpoor ◽  
Elmira Ghasemi ◽  
Ensieh Khalkhal

Urine has been in the center of attention among scientists of clinical proteomics in the past decade, because it is valuable source of proteins and peptides with a relative stable composition and easy to collect in large and repeated quantities with a noninvasive procedure. In this review, we discuss technical aspects of urinary proteomics in detail, including sample preparation, proteomic technologies, and their advantage and disadvantages. Several recent experiments are presented which applied urinary proteome for biomarker discovery in renal diseases including diabetic nephropathy, immunoglobulin A (IgA) nephropathy, focal segmental glomerulosclerosis, lupus nephritis, membranous nephropathy, and acute kidney injury. In addition, several available databases in urinary proteomics are also briefly introduced.


Sign in / Sign up

Export Citation Format

Share Document