Influence of different radioprotective compounds on radiotolerance and cell cycle distribution of human progenitor cells of granulocytopoiesis in vitro

2002 ◽  
Vol 119 (1) ◽  
pp. 244-254 ◽  
Author(s):  
Werner Klingler ◽  
Ludwika Kreja ◽  
Wilhelm Nothdurft ◽  
Christoph Selig
1985 ◽  
Vol 162 (6) ◽  
pp. 2053-2067 ◽  
Author(s):  
M W Long ◽  
D N Shapiro

Mitogen-activated murine T lymphocytes or T cell hybridomas produce an activity (megakaryocyte [Mk] potentiator activity) that enhances the in vitro growth and development of Mk colonies. This activity was found in optimal concentrations (2.5%) in T cell hybridoma-conditioned medium, and was also produced by feeder layers of concanavalin A-activated T cells. A subpopulation of murine Mk progenitor cells (colony-forming units; CFU-Mk) bears the Ia antigen. Separate experiments indicated that T cell products stimulate CFU-Mk by increasing their basal levels of Ia expression as well as the frequency of cells actively synthesizing DNA. The hypothesis that the expression of this antigen was related to the cell cycle status of these progenitor cells was confirmed in studies that indicated that ablation of actively cycling cells in vivo abrogated the cytotoxic effects of anti-Ia monoclonal antibodies. The interdependence of T cell lymphokine regulation of both Ia expression and cell cycle status was also seen in in vitro experiments in which Ia+ progenitor cells were eliminated by complement-dependent cytotoxicity. The removal of Ia+ cells prevented 5-hydroxyurea-mediated inhibition of cells in S phase. We hypothesize that immune modulation of megakaryocytopoiesis occurs via soluble T cell products that augment Mk differentiation. Further, the mechanism of immune recognition/modulation may occur via Ia antigens present on the surface of these progenitor cells.


2021 ◽  
Author(s):  
Dong Wang ◽  
Bethany Veo ◽  
Angela Pierce ◽  
Susan Fosmire ◽  
Krishna Madhavan ◽  
...  

Abstract Background Group 3 medulloblastoma (MB) is often accompanied by MYC amplification. PLK1 is an oncogenic kinase that controls cell cycle and proliferation and has been preclinically validated as a cancer therapeutic target. Onvansertib (PCM-075) is a novel, orally available PLK1 inhibitor, which shows tumor growth inhibition in various types of cancer. We aim to explore the effect of onvansertib on MYC-driven medulloblastoma as a monotherapy or in combination with radiation. Methods Crisper-Cas9 screen was used to discover essential genes for MB tumor growth. Microarray and immunohistochemistry on pediatric patient samples were performed to examine the expression of PLK1. The effect of onvansertib in vitro was measure by cell viability, colony-forming assays, extreme limiting dilution assay and RNA-Seq. ALDH activity, cell-cycle distribution and apoptosis were analyzed by flow cytometry. DNA damage was assessed by immunofluorescence staining. Medulloblastoma xenografts were generated to explore the monotherapy or radio-sensitizing effect. Results PLK1 is overexpressed in Group 3 MB. The IC50 concentrations of onvansertib in Group 3 MB cell lines were in a low nanomolar range. Onvansertib reduced colony formation, cell proliferation, stem cell renewal and induced G2/M arrest in vitro. Moreover, onvansertib in combination with radiation increased DNA damage and apoptosis compare with radiation treatment alone. The combination radiotherapy resulted in marked tumor regression in xenografts. Conclusions These findings demonstrate the efficacy of a novel PLK1 inhibitor onvansertib in vitro and in xenografts of Group 3 MB, which suggests onvansertib is an effective strategy as monotherapy or in combination with radiotherapy in MB.


2004 ◽  
Vol 45 (7) ◽  
pp. 1437-1443 ◽  
Author(s):  
Maria R Ricciardi ◽  
Maria T Petrucci ◽  
Chiara Gregorj ◽  
Vincenza Martini ◽  
Anna Levi ◽  
...  

2017 ◽  
Vol 65 (7) ◽  
pp. 1084-1088 ◽  
Author(s):  
Xiao-Jing Yu ◽  
Tie-Jun Song ◽  
Lu-Wei Zhang ◽  
Ying Su ◽  
Ke-Yu Wang ◽  
...  

Psoriasis is a chronic skin disease characterized by abnormal keratinocyte proliferation and differentiation, inflammation, and angiogenesis. Overexpression of tribbles homolog3 (TRB3), which belongs to the tribbles family of pseudokinases, has been found in several human tumors and metabolic diseases, but its role in psoriasis has not been fully clarified. The aim of this study is to investigate the expression of TRB3 in psoriasis and explore its roles in the proliferation of keratinocytes. Twenty-four patients with psoriasis vulgaris were recruited for the study. Diagnosis of psoriasis was based on clinical and histologic examinations. Immunohistochemistry and real-time reverse transcription PCR (RT-PCR) were performed to determine protein and messenger RNA (mRNA) expression of TRB3 in psoriasis lesions. 5-Bromo-2-deoxyUridine (BrdU) incorporation assay were performed for cell proliferation. Cell cycle distribution was assessed by flow cytometry analysis. The levels of TRB3 is elevated in psoriatic lesions compared with psoriatic non-lesions. The HaCat cells expressed the TRB3 gene. We found TRB3 silencing to significantly inhibit HaCat cell proliferation. Furthermore, the specific knockdown of TRB3 slowed down the cell cycle at the gap 0/first gap phase. In conclusion, our data suggest that TRB3 is overexpressed in lesions of patients with psoriasis and may be involved in the abnormal proliferation of keratinocytes. Therefore, TRB3 may be a potential therapeutic target for psoriasis.


1993 ◽  
Vol 264 (2) ◽  
pp. L153-L159 ◽  
Author(s):  
B. D. Uhal ◽  
M. D. Etter

Hypertrophic and normotrophic type II pneumocytes were isolated from pneumonectomized adult rats by unit gravity (1 g) sedimentation or by fluorescence-activated cell sorting (FACS). In vivo or in vitro, hypertrophic cells incorporated significantly more 5-bromo-2'-deoxyuridine or tritiated thymidine into acid-insoluble material than did normotrophic cells. By FACS analysis of cell subpopulations isolated by 1 g, > 97% of normotrophic cells had G0-phase DNA content. In contrast, the cell cycle distribution of hypertrophic cells was 75% G1, 5% S, and 20% G2/M phases. Rates of incorporation of tritiated choline into total cellular phosphatidylcholine (PC) were identical in type II cells isolated from normal or pneumonectomized rats. The intracellular contents of disaturated phosphatidylcholine (DSPC) and total PC, as well as the ratio of these two lipids, were the same in hypertrophic and normotrophic cells from pneumonectomized rats and in cells isolated from normal rats. No significant difference was observed in the rate at which hypertrophic or normotrophic cells incorporated choline into DSPC. These results demonstrate that type II pneumocyte hypertrophy after pneumonectomy reflects balanced cell growth secondary to cell cycle progression in vivo. The data also indicate that epithelial cell hypertrophy after pneumonectomy, in contrast to that which develops after more acute lung injury, occurs without activation of surfactant biosynthesis or storage.


2020 ◽  
Vol 318 (5) ◽  
pp. C903-C912 ◽  
Author(s):  
Shuai Wu ◽  
Han Chen ◽  
Ling Zuo ◽  
Hai Jiang ◽  
Hongtao Yan

This study explored the effects of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on the development of uveal melanoma. Moreover, the role of the MALAT1/microRNA-608 (miR-608)/homeobox C4 (HOXC4) axis was assessed by evaluating the proliferation, invasion, and migration, as well as the cell cycle distribution of uveal melanoma in vitro after knocking down MALAT1 or HOXC4 and/or overexpression of miR-608 in uveal melanoma cells (MUM-2B and C918). Moreover, the effects of the MALAT1/miR-608/HOXC4 axis in uveal melanoma in vivo were further evaluated by injecting the C918 cells into the NOD/SCID mice. HOXC4 was found to be a gene upregulated in uveal melanoma, while knockdown of its expression resulted in suppression of uveal melanoma cell migration, proliferation, and invasion, as well as cell cycle progression. In addition, the upregulation of miR-608 reduced the expression of HOXC4 in the uveal melanoma cells, which was rescued by overexpression of MALAT1. Hence, MALAT1 could upregulate the HOXC4 by binding to miR-608. The suppressed progression of uveal melanoma in vitro by miR-608 was rescued by overexpression of MALAT1. Additionally, in vivo assays demonstrated that downregulation of MALAT1 could suppress tumor growth through downregulation of HOXC4 expression via increasing miR-608 in uveal melanoma. In summary, MALAT1 downregulation functions to restrain the development of uveal melanoma via miR-608-mediated inhibition of HOXC4.


2008 ◽  
Vol 411 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Masato Iida ◽  
Masao Matsuda ◽  
Hideya Komatani

The Plk (polo-like kinase) family is involved in cell-cycle machinery. Despite the possible overlapping involvement of Plk1 and Plk3 in cell-cycle distribution, the precise role of each Plk might be different. To investigate mechanisms that may differentiate their physiological roles, we compared the substrate specificities of Plk1 and Plk3 using synthetic peptides. Among these substrate peptides, topoisomerase IIα EKT1342DDE-containing synthetic peptide was strongly phosphorylated by Plk3 but not by Plk1. By modulating the topoisomerase IIα peptide, we identified residues at positions +1, +2 and +4 as determinants of differential substrate recognition between Plk1 and Plk3. Acidic residues at positions +2 and +4 appear to be a positive determinant for Plk3 but not Plk1. Variation at position +1 appears to be tolerated by Plk3, while a hydrophobic residue at +1 is critical for Plk1 activity. The direct phosphorylation of Thr1342 of topoisomerase IIα by Plk3 was demonstrated with an in vitro kinase assay, and overexpression of Plk3 induced the phosphorylation of Thr1342 in cellular topoisomerase IIα. Furthermore, the physical interaction between Plk3 and topoisomerase IIα was also demonstrated in cells in addition to phosphorylation. These data suggest that topoisomerase IIα is a novel physiological substrate for Plk3 and that Plk1 and Plk3 play different roles in cell-cycle regulation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4237-4237
Author(s):  
Toni Peled ◽  
Noga R. Goudsmid ◽  
Frida Grynspan ◽  
Sophie Adi ◽  
Efrat Landau ◽  
...  

Abstract In vitro cell expansion is constrained by default pathways of commitment and differentiation resulting in limited expansion of hematopoietic stem-progenitor cells (HSPCs). Still, several ex vivo manipulations have been reported to achieve expansion of HSPCs by altering cell cycle kinetics and enhancing progression through the G1-S barrier. We have previously shown that addition of tetraethylenepentamine (TEPA), a polyamine copper chelator, to cytokine-supplemented CD34+ cell cultures modulates cytokine-driven hematopoietic cell fate in vitro, resulting in remarkable expansion of a cell population that displays phenotypic and functional characteristics of HSPCs (Exp Hematol.2004;32 (6):547–55). The objective of the present study was to evaluate the mechanism leading to expansion of early progenitor cells following short-term exposure to TEPA. To this end, cell cycle profile, tracking of proliferation history, as well as determination of actual numbers of progenitor subsets were studied. In order to follow the extent of proliferation by tracking the number of cellular divisions, freshly isolated CD34+ cells were labeled with PKH2, a membrane dye that is sequentially diluted during every cell division. Fluorescence intensities of CD34+ and that of a more immature CD34+CD38− cell subset were determined immediately after staining. The cells were then cultured in serum-containing medium and a cocktail of cytokines (SCF, TPO, IL-6, Flt3-ligand, at 50 ng/ml each and IL-3 at 20 ng/ml), with and without TEPA. Total nucleated cells (TNC), purified CD34+ cells and CD34+CD38− cells were analyzed for PKH2 fluorescence intensity during the first two weeks of culture. Cell cycle profile was detected with the DNA intercalating agent propidium iodide, which determines cellular DNA content. FACS analysis of the cultured cells as well as progenitor cell quantification by immuno-affinity purification revealed comparable expansion levels of TNC and CD34+ cells in both TEPA-treated and control cultures during the first two weeks, as previously published. Although similar CD34+ cell numbers were observed, the mean frequency of CD34+CD38− and CD34+CD38-Lin- cells within the CD34+ cell population was significantly higher in TEPA-treated cultures over the control (0.2 vs. 0.04 and 0.07 vs. 0.01, respectively; n=6, p<0.05). Median PKH2 fluorescence intensity of CD34+CD38− subset was two fold higher in TEPA than in control cultures, demonstrating that early progenitor cells derived from TEPA-treated cultures consistently accomplished less proliferation cycles as compared to early progenitor cells derived from control cultures. This effect was not mirrored by a significant alteration of the cell cycle profile (Control (%): G1=26±14, S=2.6±0.1, G2=0.7±0.4; TEPA(%): G1=29±12, S=1.7±0.9, G2=0.4±0.2). Taken together, the data suggest that during cycling, the CD34+CD38− phenotype is preserved more successfully in TEPA-treated than in control cultures, suggesting retention of self-renewing potential of early progenitor cells under these culture conditions. This mechanism also supports a role for TEPA in inhibition of early progenitor cell differentiation. Ongoing work is aimed at further defining whether phenotype reversion or self-renewal (or both) lie at the foundation of TEPA-mediated progenitor cell expansion.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1352-1352
Author(s):  
Kerstin Schwarz ◽  
Oliver Ottmann ◽  
Annette Romanski ◽  
Anja Vogel ◽  
Jeffrey W. Scott ◽  
...  

Abstract Introduction: Histone deacetylase inhibitors (DACi) have shown promising antileukemic activity by overcoming the differentiation block and inducing apoptosis in AML blasts. Recent data demonstrating enhanced maintenance and functional capacity of normal, but also leukemic hematopoietic progenitor cells (HPC) by the selective class I DACi valproic acid (VPA) have raised concerns about VPA in AML therapy. As more potent pan-DACi have entered clinical trials, we analysed the impact of the hydroxamic acid LAQ824 on phenotype and function of normal and leukemic CD34+ HPC and studied LAQ824- induced gene expression in the most primitive CD34+CD38- population of normal HPC. Methods: Differentiation and proliferation of CD34+ cells of bone marrow of healthy donors and peripheral blood samples of newly diagnosed AML patients were evaluated after one week of culture in presence of SCF, FLT3 ligand, TPO, IL-3 +/− LAQ824. The effect of LAQ824 on gene expression profiles in normal CD34+CD38− cells was assessed in three independent cell samples following incubation with cytokines +/− LAQ824 for 48 hours using Affymetrix GeneChip Human Genome U133 Plus 2.0 and Gene Spring Software. Serial replating of murine Sca1+Lin- HPC was performed in the presence of SCF, G-CSF, GM-CSF, IL-3, IL-6 +/− LAQ824. Results: Treatment of murine Sca1+Lin- HPC with LAQ824 (10 nM) significantly augmented colony numbers (p<0.01; n=3), and supported colony growth after four cycles of replating whereas no colonies developed in its absence beyond the second plating indicating preservation of functionally active multipotent progenitor cells. LAQ824 (10–20 nM) mediated acetylation of histone H3 in human normal and leukemic HPC. In normal HPC, LAQ824 (0–20 nM) lead to a dose-dependent increase in the proportion of CD34+ cells (20% w/o LAQ824 vs. 36% with LAQ824 20nM, p=0.07) and a significant reduction of CD14+ monocytes (18% vs. 3%, p= 0.02; n=3). The total number of CD34+ cells remained stable up to 10 nM and decreased at 20 nM. Gene expression analysis showed, that LAQ824 (20 nM) lead to an at least 3-fold up-regulation of 221 genes in all three HPC samples tested including HDAC11 and the cell cycle inhibitor p21waf1/cip1 known to be induced by most DACi in HPC. We identified several members of the notch pathway such as mastermind-like protein 2 (MAML2, a component of the active notch transcriptional complex) and notch target genes including the transcription factors HES1, HEY1 and HOXA10 and confirmed increase of protein levels by Western blotting. Reduced gene expression of mini-chromosome-maintenance (MCM) protein family members was observed which - in addition to up-regulation of p21 - has previously been associated with notch-mediated cell cycle arrest. To compare the effect of LAQ824 (20 nM) with VPA (150 ng/ml) on leukemic HPC, cells were cultured for one week with or w/o DACi. Of note, LAQ824 resulted in a 0.8-fold reduction of CD34+ leukemic HPC, while VPA expanded this population 2.2-fold compared with cytokine-treated controls (p=0.03; n=12). CFU numbers growing from CD34+ leukemic HPC in presence of LAQ824 did not differ significantly from controls (n=9). Conclusion: LAQ824 seems to diminish, but not eliminate normal as well as leukemic HPC as determined by phenotypic and functional in vitro analyses. Our gene expression analysis suggested an association with coactivator and target genes of the notch pathway and cell cycle arrest-inducing genes. In contrast to VPA, LAQ824 does not seem to support growth of leukemic HPC which may contribute to its more potent antileukemic effect.


Sign in / Sign up

Export Citation Format

Share Document