Oncogene and Suppressor Gene Expression as a Biomarker for Ethylene Oxide Exposure

1998 ◽  
Vol 22 (3) ◽  
pp. 241-245 ◽  
Author(s):  
Istvan Ember ◽  
Istvan Kiss ◽  
Gyorgy Gombkoto ◽  
Erzsebet Muller ◽  
Maria Szeremi
2021 ◽  
pp. 1-10
Author(s):  
Sanaa A. El-Benhawy ◽  
Samia A. Ebeid ◽  
Nadia A. Abd El Moneim ◽  
Rabie R. Abdel Wahed ◽  
Amal R.R. Arab

BACKGROUND: Altered cadherin expression plays a vital role in tumorigenesis, angiogenesis and tumor progression. However, the function of protocadherin 17 (PCDH17) in breast cancer remains unclear. OBJECTIVE: Our target is to explore PCDH17 gene expression in breast carcinoma tissues and its relation to serum angiopoietin-2 (Ang-2), carbonic anhydrase IX (CAIX) and % of circulating CD34+ cells in breast cancer patients (BCPs). METHODS: This study included Fifty female BCPs and 50 healthy females as control group. Cancerous and neighboring normal breast tissues were collected from BCPs as well as blood samples at diagnosis PCDH17 gene expression was evaluated by RT-PCR. Serum Ang-2, CAIX levels were measured by ELISA and % CD34+ cells were assessed by flow cytometry. RESULTS: PCDH17 was downregulated in cancerous breast tissues and its repression was significantly correlated with advanced stage and larger tumor size. Low PCDH17 was significantly correlated with serum Ang-2, % CD34+ cells and serum CAIX levels. Serum CAIX, Ang-2 and % CD34+ cells levels were highly elevated in BCPs and significantly correlated with clinical stage. CONCLUSIONS: PCDH17 downregulation correlated significantly with increased angiogenic and hypoxia biomarkers. These results explore the role of PCDH17 as a tumor suppressor gene inhibiting tumor growth and proliferation.


1994 ◽  
Vol 269 (36) ◽  
pp. 22607-22613 ◽  
Author(s):  
K.K. Kim ◽  
M.H. Soonpaa ◽  
A.I. Daud ◽  
G.Y. Koh ◽  
J.S. Kim ◽  
...  

Oncogene ◽  
2004 ◽  
Vol 23 (49) ◽  
pp. 8135-8145 ◽  
Author(s):  
Olubunmi Afonja ◽  
Dominique Juste ◽  
Sharmistha Das ◽  
Sachiko Matsuhashi ◽  
Herbert H Samuels

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 9087-9087
Author(s):  
Abdul Rafeh Naqash ◽  
Charalampos S. Floudas ◽  
Asaf Maoz ◽  
Joanne Xiu ◽  
Yasmine Baca ◽  
...  

9087 Background: Recent data suggest inferior responses to immune checkpoint inhibitors (ICIs) in STK11-mt NSCLC. TP53 is a critical tumor suppressor gene regulating DNA repair by arresting cells in the G1 phase in response to critical double strand breaks. We hypothesized that accumulated DNA damage from mutations in the TP53 gene might increase immunogenicity and potentially enhance benefit of ICIs in STK11-mt NSCLC. Methods: A total of 16,896 NSCLC tumors submitted to Caris Life Sciences (Phoenix, AZ) for targeted NGS (DNA-Seq, 592 genes) were analyzed. A subset (N = 5034 tumors) had gene expression profiling (RNA-Seq, whole transcriptome). PD-L1 (TPS) was tested with 22c3 antibody (Dako). Exome-level neoantigen load for STK11-mt NSCLC was obtained from published TCGA Pan-immune analysis (Thorsson et al. 2018). Non-parametric tests were used for comparing differences in tumor mutational burden (TMB) and neoantigen load. Transcriptomic analysis included differential gene expression and hierarchical clustering. Tumor immune cell content was obtained from transcriptome using Microenvironment Cell Population-counter (MCP). Publicly available data from the POPLAR/OAK trials of atezolizumab in advanced NSCLC were used to model PFS and OS for STK11-mt with TP53-mt (n = 14) and without TP53-mt (n = 20). Results: Of 16,896 NSCLC samples, 12.6% had an STK11-mt with the proportions of TMB-high (≥10 Mut/Mb), PD-L1 ≥ 50% and MSI-high being 55.9%, 11.8%, and 0.72%, respectively. STK11-mt vs. STK11-wt NSCLC did not differ in median TMB (Caris:10 vs. 10 Mut/Mb; p > 0.1) or neoantigen load (TCGA: 154.5 vs. 165; p > 0.1). Median TMB (13 vs. 9 Mut/Mb; p < 0.001) and neoantigen load (263 vs. 134; p < 0.001) were higher in STK11-mt/ TP53-mt vs. STK11-mt/ TP53-wt. MCP analysis showed higher CD8, NK-cell and lower myeloid dendritic cell infiltration in STK11-mt/ TP53-mt vs. STK11-mt/ TP53-wt (p < 0.01). Expression of MYC and HIF-α were increased in the STK11-mt/ TP53-mt vs. STK11-mt/ TP53-wt (p < 0.01) along with higher expression (p < 0.01) of genes associated with both glycolysis ( HK2, LDHA, ALDOA) and glutamine metabolism ( GOT2, PPAT2). Hierarchical clustering of STK11-mt adenocarcinomas (n = 463) for STING pathway genes (CCL5, CXCL10, cGAS) identified a STING-high and a STING low cluster. The STING high cluster was significantly enriched in TP53-mt (48 vs. 32%; p < 0.01).In the OAK/POPLAR cohort, median OS (HR is 1.14, 95% CI 0.53 - 2.48); p > 0.1) and PFS (HR 1.88, 95% CI 0.89-3.97, p = 0.098) were not statistically different between STK11-mt/ TP53-mt vs. STK-mt/ TP53-wt. However, the 15-months PFS was 21% in the STK11-mt/ TP53-mt vs 0% in the STK11-mt/ TP53-wt. Conclusions: STK11-mt NSCLC with TP53-mt are associated with an immunologically active TME with metabolic reprogramming. These intrinsic properties could be exploited to improve outcomes to ICIs in combination with metabolically directed agents.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5335-5335
Author(s):  
Nancy Day ◽  
Janet Ayello ◽  
Ian Waxman ◽  
Evan Shereck ◽  
Catherine McGuinn ◽  
...  

Abstract Background: The progress of childhood BL and DLBCL has improved dramatically in the past three decades; however, patients with a 13q-deletion have a significantly poorer outcome (Cairo/Patte et al Blood, 2007 and Patte/Cairo et al Blood, 2007; Poirel/Cairo et al Leukemia 2008). DLEU1, a potential tumor suppressor gene, is located within the 13q-deletion. DLEU1 was reported to be a key gene in the Burkitt classifier genes (Dave/Staudt et al NEJM, 2006) and c-myc binds to the promoter region of DLEU1. DLEU1-network proteins include, among others, E3 ubiquitin-protein ligase (UBR1), Tubulin beta-2C (TUBB2C) and RASSF1A. We previously demonstrated that UBR1, TUBB2C, and RASSF1A, were differentially expressed in BL vs DLBCL patients and cell lines by global gene profiles and real time RT-PCR studies (Day/Cairo et al AACR 2008; Day/Cairo et al ICML 2008). We further demonstrated decreased expression of UBR1 (33.2±4.5% reduction compared to control (p&lt;0.02)) and TUBB2C (30.0±3.5% reduction compared to control (p&lt;0.001)) by DLEU1 gene siRNA knock down, while expression of RASSF1A was not changed (Day/Cairo, et al SIOP 2008). Taken together, these data suggest the hypothesis that DLEU1 interacting with UBR1 may interfere with microtubule function, and therefore act as a tumor repressor in c-myc-activated BL lymphomagenesis, by arrest of the cell cycle at G2/M and subsequent inducion of apoptosis. Objective: In this study, we investigated the role of DLEU1 in regulation of apoptosis in BL by inhibition of DLEU1 gene expression by a DLEU1 siRNA and evaluated it effects on the apoptotic rate in a BL cell line. Methods: The Ramos BL cell line was transiently transfected with a 25-nucleotide modified DLEU1 siRNA (5′-AUACUUGGCAUGAAUGAACUUAUGU-3′ and 3′-UAUGAACCGUACUUACUUGAAUACA-5′). Stealth RNAi whose GC content is similar to that of this DLEU1 siRNA was used as negative control. The transient transfection of DLEU1 siRNA (10 – 20 nM) was achieved using Lipofectamine RNAiMAX. The transfection efficiency of siRNA was evaluated using Alexa Fluor Red Fluorescent Oligo. DLEU1 contents were measured by qRT-PCR with ddCt relative quantitative determination. GAPDH was used as endogenous control. Statistical analysis was conducted by one-way analysis of variance (ANOVA) followed by Tukey-Kramer multiple comparisons test. To determine the early and late stages of apoptosis, we transfected Ramos BL cells with DLEU1 siRNA, and then incubated cells with Annexin V-FITC and Propidium Iodide for 15 minutes, respectively (BD Pharmingen), followed by FACS using BD LSRII with FACSDiva. Results: The DLEU1 siRNA decreased the expression of DLEU1 RNA (52±13%; p&lt;0.0006). The transfection efficiency of siRNA was 85 – 90%. Comparing to untreated cells, DLEU1 siRNA treatment significantly reduced early apoptosis (16.90±0.37%; p&lt;0.001) and late stage apoptosis (14.70±0.27%; p&lt;0.0001). Conclusion: These results suggest that when DLEU1 gene expression is decreased in BL cells, there is a significant reduction in both early and late apoptosis. The results strongly support a relationship between DLEU1 gene and regulation of BL apoptotic mechanisms. In concert with previous investigations, this data suggests that DLEU1 may function as a tumor growth repressor via UBR1 and TUBB2C-regulated mechanism in the cellular apoptotic process. Since c-myc binds promoter region of DLEU1 and these two genes are a part of the c-myc signaling network, this further underscores the importance of DLEU1 and its network proteins may play in c-myc-activated BL lymphomagenesis.


Sign in / Sign up

Export Citation Format

Share Document