scholarly journals Circular polarised antenna fabricated with low‐cost 3D and inkjet printing equipment

2017 ◽  
Vol 53 (6) ◽  
pp. 370-371 ◽  
Author(s):  
S. Jun ◽  
B. Sanz‐Izquierdo ◽  
J. Heirons ◽  
C.X. Mao ◽  
S. Gao ◽  
...  
Keyword(s):  
2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2017 ◽  
Vol 5 (39) ◽  
pp. 20860-20866 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Jung-Tsai Chen ◽  
Miao Yu

We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Martha A. T. Lenio ◽  
James Howard ◽  
Doris (Pei Hsuan) Lu ◽  
Fabian Jentschke ◽  
Yael Augarten ◽  
...  

For higher-efficiency solar cell structures, such as the Passivated Emitter Rear Contact (PERC) cells, to be fabricated in a manufacturing environment, potentially low-cost techniques such as inkjet printing and metal plating are desirable. A common problem that is experienced when fabricating PERC cells is low fill factors due to high series resistance. This paper identifies and attempts to quantify sources of series resistance in inkjet-patterned PERC cells that employ electroless or light-induced nickel-plating techniques followed by copper light-induced plating. Photoluminescence imaging is used to determine locations of series resistance losses in these inkjet-patterned and plated PERC cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4770-4773 ◽  
Author(s):  
Chunxiu Xu ◽  
Longfei Cai ◽  
Minghua Zhong ◽  
Shuyue Zheng

μPADS were fabricated by inkjet printing of permanent marker ink on filter paper, followed by evaporation of solvent.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lingjun Wu ◽  
Wei Wang ◽  
Haitao Zhao ◽  
Libo Gao ◽  
Jibao Lu ◽  
...  

Inkjet printing-based 2D materials for flexible electronics have aroused much interest due to their highly low-cost customization and manufacturing resolution. However, there is a lack of investigation and essential understanding of the surface adhesion affected by the printing parameters at the atomic scale. Herein, we conducted a systematic molecular dynamics simulation investigating the inkjet printing of graphitic inks on polyimide substrates under various conditions. Simulations under different temperatures, inkjet velocities, and mechanical loadings such as pressure and deformation are performed. The results show that the best adhesion is achieved in the plasma-modified polyimide/graphene-oxide (mPI/GO) interfacial system (the interaction energy (Ein) between mPI and GO is ca. 1.2 times than with graphene). The adhesion strength decreases with increasing temperature, and higher inkjet velocities lead to both larger impact force as well as interfacial fluctuation, while the latter may result in greater interfacial instability. When loaded with pressure, the adhesion strength reaches a threshold without further improvement as continuing compacting of polymer slabs can hardly be achieved. The detachment of the interfaces was also explored and mPI/GO shows better resistance against delamination. Hopefully, our simulation study paves the way for future inkjet printing-based manufacturing of graphene-based flexible electronics.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 977 ◽  
Author(s):  
Dimitris Barmpakos ◽  
Apostolos Segkos ◽  
Christos Tsamis ◽  
Grigoris Kaltsas

In this work we present the development of a low-cost humidity and temperature sensing platform on paper by inkjet printing, using a commercial AgNPs conductive ink. The humidity sensing module was capable of measuring relative humidity in the range of 0–90%rH, exhibiting linear response with minimal memory effect when returning to 0%rH baseline signal while the temperature sensor performed linearly as well in the range of 25–75°C. Process repeatability has been verified by electrical and optical characterization. Mechanical bending results highlight the platform’s capability to serve as an easy to install, flexible multi-parametric sensing platform.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chih-Ting Lin ◽  
Chun-Hao Hsu ◽  
Chang-Hung Lee ◽  
Wen-Jung Wu

Poly(3-hexylthiophene), P3HT, has been widely used in organic electronics as a semiconductor material. It suffers from the low carrier mobility characteristics. This limits P3HT to be employed in applications. Therefore, the blending semiconductor material, carbon nanoparticle (CNP), and P3HT, are developed and examined by inkjet-printing organic field-effect transistor technology in this work. The effective carrier mobility of fabricated OFETs can be enhanced by 8 folds with adding CNP and using O2plasma treatment. At the same time, the transconductance of fabricated OFETs is also raised by 5 folds. Based on the observations of SEM, XRD, and FTIR, these improvements are contributed to the local field induced by the formation of CNP/P3HT complexes. This observation presents an insight of the development in organic semiconductor materials. Moreover, this work also offers a low-cost and effective semiconductor material for inkjet-printing technology in the development of organic electronics.


Sign in / Sign up

Export Citation Format

Share Document