Fully integrated bio‐chip with high sensitivity for electrochemical sensing application

2019 ◽  
Vol 55 (8) ◽  
pp. 438-440
Author(s):  
W.‐H. Chen ◽  
C.‐H. Chang ◽  
H.‐Y. Shih ◽  
T.‐W. Chiu ◽  
C.‐N. Kuo
2021 ◽  
Vol 1154 ◽  
pp. 338295
Author(s):  
Wenqi Wang ◽  
Rui Han ◽  
Kai Tang ◽  
Shuju Zhao ◽  
Caifeng Ding ◽  
...  

2016 ◽  
Vol 22 (20) ◽  
pp. 6846-6852 ◽  
Author(s):  
Emanuela Bonaiuto ◽  
Massimiliano Magro ◽  
Davide Baratella ◽  
Petr Jakubec ◽  
Elisabetta Sconcerle ◽  
...  

2021 ◽  
Author(s):  
Feng Gao ◽  
Xiaolong Tu ◽  
Yongfang Yu ◽  
Yansha Gao ◽  
Jin Zou ◽  
...  

Abstract Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. Core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1 µM to 300.0 µM, and a low limit of detection (LOD) of 0.033 µM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45-104.80%.


2019 ◽  
Vol 97 (2) ◽  
pp. 140-146
Author(s):  
Tian Gan ◽  
Zhikai Wang ◽  
Mengru Chen ◽  
Wanqiu Fu ◽  
Haibo Wang ◽  
...  

In this work, the Ag@Cu particles with yolk–shell nanostructure was prepared by facile solvothermal method, which was modified on glassy carbon electrode (GCE) to fabricate electrochemical sensor for the convenient and fast determination of p-aminobenzoic acid (PABA). The surface morphology and electrochemical properties of the as-prepared Ag@Cu nanocomposite modified electrode were characterized by scanning electron microscopy, transmission electron microscopy, chronocoulometry, and electrochemical impedance spectroscopy. Further, the electrochemical sensing of PABA was performed on the Ag@Cu/GCE using cyclic voltammetry and differential pulse voltammetry techniques, showing high catalytic activity. Under the optimal conditions, the sensor exhibited a wide linear range, high sensitivity, and low detection limit of 0.315 μmol/L for PABA. The developed sensor was also successfully applied for PABA detection in anesthetic and cosmetics with satisfactory results.


2018 ◽  
Vol 6 (8) ◽  
pp. 1195-1206 ◽  
Author(s):  
Qi Yan Siew ◽  
Shiau Ying Tham ◽  
Hwei-San Loh ◽  
Poi Sim Khiew ◽  
Wee Siong Chiu ◽  
...  

A simple, safe, and efficient approach to synthesise graphene/titanium dioxide (G/TiO2) nanocomposites with potential in electrochemical sensing application and relatively good biocompatibility to human cells.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3295 ◽  
Author(s):  
Hyerim Lee ◽  
Yeomin Kim ◽  
Areum Yu ◽  
Dasol Jin ◽  
Ara Jo ◽  
...  

By means of electrospinning with the thermal annealing process, we investigate a highly efficient sensing platform driven by a hierarchical hetero-nanostructure for the sensitive detection of biologically relevant molecules, consisting of single crystalline ruthenium dioxide nanorods (RuO2 NRs) directly grown on the surface of electrospun tungsten trioxide nanofibers (WO3 NFs). Electrochemical measurements reveal the enhanced electron transfer kinetics at the prepared RuO2 NRs-WO3 NFs hetero-nanostructures due to the incorporation of conductive RuO2 NRs nanostructures with a high surface area, resulting in improved relevant electrochemical sensing performances for detecting H2O2 and L-ascorbic acid with high sensitivity.


Sensor Review ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 417-432 ◽  
Author(s):  
A. Vivek ◽  
K. Shambavi ◽  
Zachariah C. Alex

Purpose This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on metamaterial for sensing application has led to the advancement of compact and improved sensors. Design/methodology/approach In this study, relevant research papers on metamaterial sensors for material characterization published in reputed journals during the period 2007-2018 were reviewed, particularly focusing on shape, size and nature of materials characterized. Each sensor with its design and performance parameters have been summarized and discussed here. Findings As metamaterial structures are excited by electromagnetic wave interaction, sensing application throughout electromagnetic spectrum is possible. Recent advancement in fabrication techniques and improvement in metamaterial structures have led to the development of compact, label free and reversible sensors with high sensitivity. Originality/value The paper provides useful information on the development of metamaterial sensors for material characterization.


NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950138 ◽  
Author(s):  
Sai Zhang ◽  
Shijun Yue ◽  
Jiajia Li ◽  
Jianbin Zheng ◽  
Guojie Gao

Au nanoparticles anchored on core–shell [Formula: see text]-Fe2O3@SnO2 nanospindles were successfully constructed through hydrothermal synthesis process and used for fabricating a novel nonenzymatic dopamine (DA) sensor. The structure and morphology of the Au/[Formula: see text]-Fe2O3@SnO2 trilaminar nanohybrid film were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical properties of the sensor were investigated by cyclic voltammetry and amperometry. The experimental results suggest that the composites have excellent catalytic property toward DA with a wide linear range from 0.5[Formula: see text][Formula: see text]M to 0.47[Formula: see text]mM, a low detection limit of 0.17[Formula: see text][Formula: see text]M (S/[Formula: see text]) and high sensitivity of 397.1[Formula: see text][Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text]. In addition, the sensor exhibits long-term stability, good reproducibility and anti-interference.


Sign in / Sign up

Export Citation Format

Share Document