scholarly journals Abundances of disk and bulge giants from high-resolution optical spectra

2019 ◽  
Vol 625 ◽  
pp. A141 ◽  
Author(s):  
M. Lomaeva ◽  
H. Jönsson ◽  
N. Ryde ◽  
M. Schultheis ◽  
B. Thorsbro

Context. The formation and evolution of the Galactic bulge and the Milky Way is still a debated subject. Observations of the X-shaped bulge, cylindrical stellar motions, and the presumed existence of a fraction of young stars in the bulge have suggested that it formed through secular evolution of the disk and not through gas dissipation and/or mergers, as thought previously. Aims. Our goal was to measure the abundances of six iron-peak elements (Sc, V, Cr, Mn, Co, and Ni) in the local thin and thick disks and in the bulge. These abundances can provide additional observational constraints for Galaxy formation and chemical evolution models, and help us to understand whether the bulge has emerged from the thick disk or not. Methods. We use high-resolution optical spectra of 291 K giants in the local disk mostly obtained by the FIES at NOT (signal-to-noise ratio (S/N) of 80–100) and 45 K giants in the bulge obtained by the UVES/FLAMES at VLT (S/N of 10–80). The abundances are measured using Spectroscopy Made Easy (SME). Additionally, we apply non-local thermodynamic equilibrium corrections to the ratios [Mn/Fe] and [Co/Fe]. The thin and thick disks were separated according to their metallicity, [Ti/Fe], as well as proper motions and the radial velocities from Gaia DR2. Results. The trend of [V/Fe] vs. [Fe/H] shows a separation between the disk components, being more enhanced in the thick disk. Similarly, the [Co/Fe] vs. [Fe/H] trend shows a hint of an enhancement in the local thick disk. The trends of V and Co in the bulge appear to be even more enhanced, although within the uncertainties. The decreasing value of [Sc/Fe] with increasing metallicity is observed in all the components, while our [Mn/Fe] value steadily increases with increasing metallicity in the local disk and the bulge instead. For Cr and Ni we find a flat trend following iron for the whole metallicity range in the disk and the bulge. The ratio of [Ni/Fe] appears slightly overabundant in the thick disk and the bulge compared to the thin disk, although the difference is minor. Conclusions. The somewhat enhanced ratios of [V/Fe] and [Co/Fe] observed in the bulge suggest that the local thick disk and the bulge might have experienced different chemical enrichment and evolutionary paths. However, we are unable to predict the exact evolutionary path of the bulge solely based on these observations. Galactic chemical evolution models could, on the other hand, allow us to predict them using these results.

2019 ◽  
Vol 631 ◽  
pp. A113 ◽  
Author(s):  
R. Forsberg ◽  
H. Jönsson ◽  
N. Ryde ◽  
F. Matteucci

Context. Observations of the Galactic bulge suggest that the disk formed through secular evolution rather than gas dissipation and/or mergers, as previously believed. This would imply very similar chemistry in the disk and bulge. Some elements, such as the α-elements, are well studied in the bulge, but others like the neutron-capture elements are much less well explored. Stellar mass and metallicity are factors that affect the neutron-capture process. Due to this, the enrichment of the ISM and the abundance of neutron-capture elements vary with time, making them suitable probes for Galactic chemical evolution. Aims. In this work, we make a differential comparison of neutron-capture element abundances determined in the local disk(s) and the bulge, focusing on minimising possible systematic effects in the analysis, with the aim of finding possible differences/similarities between the populations. Methods. Abundances are determined for Zr, La, Ce, and Eu in 45 bulge giants and 291 local disk giants, from high-resolution optical spectra. The abundances are determined by fitting synthetic spectra using the SME-code. The disk sample is separated into thin- and thick-disk components using a combination of abundances and kinematics. Results. We find flat Zr, La, and Ce trends in the bulge, with a ~0.1 dex higher La abundance compared with the disk, possibly indicating a higher s-process contribution for La in the bulge. [Eu/Fe] decreases with increasing [Fe/H], with a plateau at around [Fe/H] ~−0.4, pointing at similar enrichment to α-elements in all populations. Conclusions. We find that the r-process dominated the neutron-capture production at early times both in the disks and bulge. Further, [La/Eu] ratios for the bulge are systematically higher than for the thick disk, pointing to either a) a different amount of SN II or b) a different contribution of the s-process in the two populations. Considering [(La+Ce)/Zr], the bulge and the thick disk follow each other closely, suggesting a similar ratio of high-to-low-mass asymptotic giant branch stars.


2008 ◽  
Vol 4 (S254) ◽  
pp. 197-202
Author(s):  
Sofia Feltzing ◽  
Sally Oey ◽  
Thomas Bensby

AbstractThe past history and origin of the different Galactic stellar populations are manifested in their different chemical abundance patterns. We obtained new elemental abundances for 553 F and G dwarf stars, to more accurately quantify these patterns for the thin and thick disks. However, the exact definition of disk membership is not straightforward. Stars that have a high likelihood of belonging to the thin disk show different abundance patterns from those for the thick disk. In contrast, we show that stars for the Hercules Stream do not show unique abundance patterns, but rather follow those of the thin and thick disks. This strongly suggests that the Hercules Stream is a feature induced by internal dynamics within the Galaxy rather than the remnant of an accreted satellite.


2016 ◽  
Vol 11 (S321) ◽  
pp. 3-5
Author(s):  
Thomas Bensby

AbstractBased on observational data from the fourth internal data release of the Gaia-ESO Survey we probe the abundance structure in the Milky Way stellar disk as a function of galactocentric radius and height above the plane. We find that the inner and outer Galactic disks have different chemical signatures. The stars in the inner Galactic disk show abundance signatures of both the thin and thick disks, while the stars in the outer Galactic disk resemble in majority the abundances seen in the thin disk. Assuming that the Galactic thick disk can be associated with the α-enriched population, this can be interpreted as that the thick disk density drops drastically beyond a galactocentric radius of about 10 kpc. This is in agreement with recent findings that the thick disk has a short scale-length, shorter than that of the the thin disk.


2020 ◽  
Vol 643 ◽  
pp. A106
Author(s):  
D. Bashi ◽  
S. Zucker ◽  
V. Adibekyan ◽  
N. C. Santos ◽  
L. Tal-Or ◽  
...  

Context. The stars in the Milky Way thin and thick disks can be distinguished by several properties such as metallicity and kinematics. It is not clear whether the two populations also differ in the properties of planets orbiting the stars. In order to study this, a careful analysis of both the chemical composition and mass detection limits is required for a sufficiently large sample. Currently, this information is still limited only to large radial-velocity (RV) programs. Based on the recently published archival database of the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph, we present a first analysis of low-mass (small) planet occurrence rates in a sample of thin- and thick-disk stars. Aims. We aim to assess the effects of stellar properties on planet occurrence rates and to obtain first estimates of planet occurrence rates in the thin and thick disks of the Galaxy. As a baseline for comparison, we also aim to provide an updated value for the small close-in planet occurrence rate and compare it with the results of previous RV and transit (Kepler) works. Methods. We used archival HARPS RV datasets to calculate detection limits of a sample of stars that were previously analysed for their elemental abundances. For stars with known planets we first subtracted the Keplerian orbit. We then used this information to calculate planet occurrence rates according to a simplified Bayesian model in different regimes of stellar and planet properties. Results. Our results suggest that metal-poor stars and more massive stars host fewer low-mass close-in planets. We find the occurrence rates of these planets in the thin and thick disks to be comparable. In the iron-poor regimes, we find these occurrence rates to be significantly larger at the high-α region (thick-disk stars) as compared with the low-α region (thin-disk stars). In general, we find the average number of close-in small planets (2–100 days, 1–20M⊕) per star (FGK-dwarfs) to be: n¯p = 0.36 ± 0.05, while the fraction of stars with planets is Fh = 0.23−0.03+0.04. Qualitatively, our results agree well with previous estimates based on RV and Kepler surveys. Conclusions. This work provides a first estimate of the close-in small planet occurrence rates in the solar neighbourhood of the thin and thick disks of the Galaxy. It is unclear whether there are other stellar properties related to the Galactic context that affect small-planet occurrence rates, or if it is only the combined effects of stellar metal content and mass. A future larger sample of stars and planets is needed to address those questions.


Author(s):  
Andrew McWilliam

AbstractAt a bulge latitude of b = −4°, the average [Fe/H] and [Mg/H] values are +0.06 and +0.17 dex, roughly 0.2 and 0.7 dex higher than the local thin and thick disk values, respectively, suggesting a large bulge effective yield, perhaps due to efficient retention of supernova ejecta.The bulge vertical [Fe/H] gradient, at ~ 0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and −0.3 dex and one possibly near −0.7 dex) with latitude. At solar [Fe/H], the bulge [Al/Fe] and [α/Fe] ratios are ~ +0.15 dex. Below [Fe/H] < ![CDATA[$ ~ −0.5 dex, the bulge and local thick disk compositions are very similar; but the measured [Mg/Fe], [⟨SiCaTi⟩/Fe], [La/Eu] and dramatic [Cu/Fe] ratios suggest higher SFR in the bulge. However, these composition differences with the thick disk could be due to measurement errors and non-LTE effects.Unusual zig-zag trends of [Cu/Fe] and [Na/Fe] suggest metallicity-dependent nucleosynthesis by core-collapse supernovae in the Type Ia supernova time-delay scenario.The bulge sub-population compositions resemble the local thin and thick disks, but at higher [Fe/H], suggesting a radial [Fe/H] gradient of − $0.04]] > to − 0.05 dex/kpc for both the thin and thick disks. If the bulge formed through accretion of inner thin and thick disk stars, it appears that these stars retained vertical scale heights characteristic of their kinematic origin, resulting in the vertical [Fe/H] gradient and [α/Fe] trends seen today.


2007 ◽  
Vol 3 (S245) ◽  
pp. 35-36
Author(s):  
F. J. Martínez-Serrano ◽  
R. Domínguez-Tenreiro ◽  
M. Mollá

AbstractWe have implemented a chemical evolution model on the parallel AP3M+SPH DEVA code which we use to perform high resolution simulations of spiral galaxy formation. It includes feedback by SNII and SNIa using the Qij matrix formalism. We also include a diffusion mechanism that spreads newly introduced metals. The gas cooling rate depends on its specific composition. We study the stellar populations of the resulting bulges finding a potential scenario where they seem to be composed of two populations: an old, metal poor, α-enriched population, formed in a multiclump scenario at the beginning of the simulation and a younger one, formed by slow accretion of satellites or gas, possibly from the disk due to instabilities.


Author(s):  
Ya Chen ◽  
Geoffrey Letchworth ◽  
John White

Low-temperature high-resolution scanning electron microscopy (cryo-HRSEM) has been successfully utilized to image biological macromolecular complexes at nanometer resolution. Recently, imaging of individual viral particles such as reovirus using cryo-HRSEM or simian virus (SIV) using HRSEM, HV-STEM and AFM have been reported. Although conventional electron microscopy (e.g., negative staining, replica, embedding and section), or cryo-TEM technique are widely used in studying of the architectures of viral particles, scanning electron microscopy presents two major advantages. First, secondary electron signal of SEM represents mostly surface topographic features. The topographic details of a biological assembly can be viewed directly and will not be obscured by signals from the opposite surface or from internal structures. Second, SEM may produce high contrast and signal-to-noise ratio images. As a result of this important feature, it is capable of visualizing not only individual virus particles, but also asymmetric or flexible structures. The 2-3 nm resolution obtained using high resolution cryo-SEM made it possible to provide useful surface structural information of macromolecule complexes within cells and tissues. In this study, cryo-HRSEM is utilized to visualize the distribution of glycoproteins of a herpesvirus.


1989 ◽  
Vol 108 (6) ◽  
pp. 2343-2353 ◽  
Author(s):  
R H Singer ◽  
G L Langevin ◽  
J B Lawrence

We have been able to visualize cytoskeletal messenger RNA molecules at high resolution using nonisotopic in situ hybridization followed by whole-mount electron microscopy. Biotinated cDNA probes for actin, tubulin, or vimentin mRNAs were hybridized to Triton-extracted chicken embryo fibroblasts and myoblasts. The cells were then exposed to antibodies against biotin followed by colloidal gold-conjugated antibodies and then critical-point dried. Identification of mRNA was possible using a probe fragmented to small sizes such that hybridization of several probe fragments along the mRNA was detected as a string of colloidal gold particles qualitatively and quantitatively distinguishable from nonspecific background. Extensive analysis showed that when eight gold particles were seen in this iterated array, the signal to noise ratio was greater than 30:1. Furthermore, these gold particles were colinear, often spiral, or circular suggesting detection of a single nucleic acid molecule. Antibodies against actin, vimentin, or tubulin proteins were used after in situ hybridization, allowing simultaneous detection of the protein and its cognate message on the same sample. This revealed that cytoskeletal mRNAs are likely to be extremely close to actin protein (5 nm or less) and unlikely to be within 20 nm of vimentin or tubulin filaments. Actin mRNA was found to be more predominant in lamellipodia of motile cells, confirming previous results. These results indicate that this high resolution in situ hybridization approach is a powerful tool by which to investigate the association of mRNA with the cytoskeleton.


Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


1998 ◽  
Vol 184 ◽  
pp. 247-248
Author(s):  
T. Tosaki ◽  
Y. Shioya

To understand the origin and evolution of starburst activity, we must study the full evolution of starburst; i.e., pre-, on-going, and post-starburst phases. It seems reasonable to suppose the numerous A-type stars indicate past starburst and they show strong Balmer absorption. NGC7331, nearby early-type spiral galaxy, is one of the poststarburst galaxies which show strong Balmer absorption. The optical spectra of NGC7331 were dominated by component of intermediate-age (5 × 109 years) stellar populations (Ohyama & Taniguchi 1996). We present the result of the high resolution CO observations of NGC7331 using Nobeyama Milimeter Array.


Sign in / Sign up

Export Citation Format

Share Document