scholarly journals Hot gas heating via magnetic arms in spiral galaxies

2020 ◽  
Vol 640 ◽  
pp. A109
Author(s):  
M. Weżgowiec ◽  
M. Ehle ◽  
M. Soida ◽  
R.-J. Dettmar ◽  
R. Beck ◽  
...  

Context. Reconnection heating has been considered as a potential source of the heating of the interstellar medium. In some galaxies, significant polarised radio emission has been found between the spiral arms. This emission has a form of “magnetic arms” that resembles the spiral structure of the galaxy. Reconnection effects could convert some of the energy of the turbulent magnetic field into the thermal energy of the surrounding medium, leaving more ordered magnetic fields, as is observed in the magnetic arms. Aims. Sensitive radio and X-ray data for the grand-design spiral galaxy M 83 are used for a detailed analysis of the possible interactions of magnetic fields with hot gas, including a search for signatures of gas heating by magnetic reconnection effects. Methods. Magnetic field strengths and energies derived from the radio emission are compared with the parameters of the hot gas calculated from the model fits to sensitive X-ray spectra of the hot gas emission. Results. The available X-ray data allowed us to distinguish two thermal components in the halo of M 83. We found slightly higher average temperatures of the hot gas in the interarm regions, which results in higher energies per particle and is accompanied by a decrease in the energy density of the magnetic fields. Conclusions. The observed differences in the energy budget between the spiral arms and the interarm regions suggest that, similar to the case of another spiral galaxy NGC 6946, we may be observing hints for gas heating by magnetic reconnection effects in the interarm regions. These effects, which act more efficiently on the turbulent component of the magnetic field, are expected to be stronger in the spiral arms. However, with the present data it is only possible to trace them in the interarm regions, where the star formation and the resulting turbulence is low.

2006 ◽  
Vol 2 (S237) ◽  
pp. 470-470
Author(s):  
S. Ryś ◽  
K. T. Chyży ◽  
M. Weżgowiec ◽  
M. Ehle ◽  
R. Beck

AbstractThe Virgo Cluster spiral NGC 4569 is known for its compact starburst in the core and unusual outflow of Hα emitting gas perpendicular to the galaxy disk. Recent radio polarimetric observations with the Effelsberg telescope reveal huge magnetized outflows. Preliminary results of our XMM-Newton observations uncover not only hot gas in the disk but also an extensive X-ray envelope around it. We investigate the possibility of starburst-induced galactic outflows in various gas phases and cluster influence on the galaxy evolution.


2020 ◽  
Vol 499 (4) ◽  
pp. 5163-5174
Author(s):  
A Juráňová ◽  
N Werner ◽  
P E J Nulsen ◽  
M Gaspari ◽  
K Lakhchaura ◽  
...  

ABSTRACT X-ray emitting atmospheres of non-rotating early-type galaxies and their connection to central active galactic nuclei have been thoroughly studied over the years. However, in systems with significant angular momentum, processes of heating and cooling are likely to proceed differently. We present an analysis of the hot atmospheres of six lenticulars and a spiral galaxy to study the effects of angular momentum on the hot gas properties. We find an alignment between the hot gas and the stellar distribution, with the ellipticity of the X-ray emission generally lower than that of the optical stellar emission, consistent with theoretical predictions for rotationally supported hot atmospheres. The entropy profiles of NGC 4382 and the massive spiral galaxy NGC 1961 are significantly shallower than the entropy distribution in other galaxies, suggesting the presence of strong heating (via outflows or compressional) in the central regions of these systems. Finally, we investigate the thermal (in)stability of the hot atmospheres via criteria such as the TI- and C-ratio, and discuss the possibility that the discs of cold gas present in these objects have condensed out of the hot atmospheres.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2016 ◽  
Vol 12 (S329) ◽  
pp. 369-372
Author(s):  
C. L. Fletcher ◽  
V. Petit ◽  
Y. Nazé ◽  
G. A. Wade ◽  
R. H. Townsend ◽  
...  

AbstractRecent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.


1991 ◽  
Vol 130 ◽  
pp. 498-500
Author(s):  
G. Umana ◽  
C. Trigilio ◽  
R. M. Hjellming ◽  
S. Catalano ◽  
M. Rodonò

Algol-type binaries are basically known to undergo hydrodynamic processes related to mass exchange between components. Recent observations on radio, X-ray emission and flare-like events have raised the question of possible magnetic activity in the secondary component of these systems (Hall, 1989).From a microwave emission survey we have shown that the radio emission from Algol systems cannot be accounted for by thermal emission from an hot corona (T ≥ 107K) and that their radio luminosities compare very well with those of the magnetically active RS CVn systems (Umana et al., 1990).


2020 ◽  
Vol 633 ◽  
pp. A35 ◽  
Author(s):  
D. Gronkiewicz ◽  
A. Różańska

Context. We self-consistently model a magnetically supported accretion disk around a stellar-mass black hole with a warm optically thick corona based on first principles. We consider the gas heating by magneto-rotational instability dynamo. Aims. Our goal is to show that the proper calculation of the gas heating by magnetic dynamo can build up the warm optically thick corona above the accretion disk around a black hole of stellar mass. Methods. Using the vertical model of the disk supported and heated by the magnetic field together with radiative transfer in hydrostatic and radiative equilibrium, we developed a relaxation numerical scheme that allowed us to compute the transition form the disk to corona in a self-consistent way. Results. We demonstrate here that the warm (up to 5 keV) optically thick (up to 10 τes) Compton-cooled corona can form as a result of magnetic heating. A warm corona like this is stronger in the case of the higher accretion rate and the greater magnetic field strength. The radial extent of the warm corona is limited by local thermal instability, which purely depends on radiative processes. The obtained coronal parameters are in agreement with those constrained from X-ray observations. Conclusions. A warm magnetically supported corona tends to appear in the inner disk regions. It may be responsible for soft X-ray excess seen in accreting sources. For lower accretion rates and weaker magnetic field parameters, thermal instability prevents a warm corona, giving rise to eventual clumpiness or ionized outflow.


2004 ◽  
Vol 218 ◽  
pp. 215-218
Author(s):  
Patrizia Caraveo ◽  
Andrea De Luca ◽  
Sandro Mereghetti ◽  
Alberto Pellizzoni ◽  
Giovanni Bignami ◽  
...  

A deep XMM-Newton/EPIC observation of the field of the Geminga pulsar unveiled the presence of two elongated parallel X-ray tails trailing the neutron star. They are aligned with the object's supersonic motion, extend for ∼ 2′, and have a nonthermal spectrum produced by electron-synchrotron emission in the bow shock between the pulsar wind and the surrounding medium. Such a first ever X-ray detection of a pulsar bow shock allows us to gauge the pulsar electron injection energy and the shock magnetic field while constraining the angle of Geminga's motion and the local matter density.


2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


1990 ◽  
Vol 140 ◽  
pp. 459-462
Author(s):  
Richard G. Strom

Faraday depolarization estimates of thermal densities within the components of double radio sources agree well with estimates from X-ray observations of hot halos around early-type galaxies, provided magnetic field strengths are close to their equipartition values. Internal Faraday dispersion is the main cause of the depolarization observed.


2018 ◽  
Vol 279 ◽  
pp. 35-43 ◽  
Author(s):  
Ze Chao Jiang ◽  
Fan Yang ◽  
Jian Lan ◽  
Qing Chao Tian ◽  
Wei Dong Xuan ◽  
...  

Preparation of Mn-Cu based damping alloy ingots coupled with strong magnetic fields shows many interesting phenomena on the solidification microstructure and the crystal lattice. In this study, modified M2052 ingots were prepared under different magnetic fields to investigate the bulk solidification behavior by using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Metallographic analysis reveals that the deflection angle of the primary dendrite arm increases with the increase of magnetic field strength. The distribution of chemical composition characterized by X-ray Fluorescence discloses that Mn is enriched while Cu is depleted along the circumferential surface side, and the variation tendency changes from almost a level to a sloping line under applied magnetic field. High magnetic field have altered the orientation of the γ-Mn dendrites from (200) to (111), and the coupling mechanism of alloy solidification with strong magnetic field is discussed based on the experimental results.


Sign in / Sign up

Export Citation Format

Share Document