scholarly journals Regolith behavior under asteroid-level gravity conditions: low-velocity impacts into mm- and cm-sized grain targets

2020 ◽  
Vol 642 ◽  
pp. A198
Author(s):  
J. Brisset ◽  
C. Cox ◽  
S. Anderson ◽  
J. Hatchitt ◽  
A. Madison ◽  
...  

Context. In situ observations of small asteroids, such as Itokawa, Ryugu, and Bennu, show that surfaces covered by boulders and coarse terrain are frequent on such bodies. Regolith grain sizes have distributions on approximately mm and cm scales, and the behavior of such large grains in the very low-gravity environments of small body surfaces dictates their morphology and evolution. Aims. In order to support the understanding of natural processes (e.g., the recapturing of impact ejecta) or spacecraft-induced interactions (e.g., the fate of a small lander), we aim to experimentally investigate the response of coarse-grained target surfaces to very-low-speed impacts (below 2 m s−1). Methods. We present the outcome of 86 low-speed impacts of a cm-sized spherical projectile into a bed of simulated regolith, composed of irregular mm- and cm-sized grains. These impacts were performed under vacuum and microgravity conditions. Our results include measurements for the projectile coefficient of restitution and penetration depth, as well as ejecta production, speed, and mass estimation. As part of our data analysis, we compared our data set with impacts performed in similar conditions with fine grain regolith targets to determine the dependence of our measurements on the target grain size. Results. We find that impact outcomes include the frequent occurrence of projectile bouncing and tangential rolling on the target surface upon impact. Ejecta is produced for impact speeds higher than about 12 cm s−1, and ejecta speeds scale with the projectile to target the grain size ratio and the impact speed. Ejected mass estimations indicate that ejecta is increasingly difficult to produce for increasing grain sizes. Coefficients of restitution of rebounding projectiles do not display a dependency on the target grain size, unlike their maximum penetration depth, which can be scaled with the projectile to target grain size ratio. Finally, we compare our experimental measurements to spacecraft data and numerical work on Hayabusa 2’s MASCOT landing on the surface of the asteroid Ryugu.

2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


2018 ◽  
Vol 615 ◽  
pp. A20 ◽  
Author(s):  
Wasim Iqbal ◽  
Valentine Wakelam

Context. Species abundances in the interstellar medium (ISM) strongly depend on the chemistry occurring at the surfaces of the dust grains. To describe the complexity of the chemistry, various numerical models have been constructed. In most of these models, the grains are described by a single size of 0.1 μm. Aims. We study the impact on the abundances of many species observed in the cold cores by considering several grain sizes in the Nautilus multi-grain model. Methods. We used grain sizes with radii in the range of 0.005 μm to 0.25 μm. We sampled this range in many bins. We used the previously published, MRN and WD grain size distributions to calculate the number density of grains in each bin. Other parameters such as the grain surface temperature or the cosmic-ray-induced desorption rates also vary with grain sizes. Results. We present the abundances of various molecules in the gas phase and also on the dust surface at different time intervals during the simulation. We present a comparative study of results obtained using the single grain and the multi-grain models. We also compare our results with the observed abundances in TMC-1 and L134N clouds. Conclusions. We show that the grain size, the grain size dependent surface temperature and the peak surface temperature induced by cosmic ray collisions, play key roles in determining the ice and the gas phase abundances of various molecules. We also show that the differences between the MRN and the WD models are crucial for better fitting the observed abundances in different regions in the ISM. We show that the small grains play a very important role in the enrichment of the gas phase with the species which are mainly formed on the grain surface, as non-thermal desorption induced by collisions of cosmic ray particles is very efficient on the small grains.


Amylase ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Wei Ping Quek ◽  
Wenwen Yu ◽  
Glen P. Fox ◽  
Robert G. Gilbert

Abstract In brewing, amylases are key enzymes in hydrolyzing barley starch to sugars, which are utilized in fermentation to produce ethanol. Starch fermentation depends on sugars produced by amylases and starch molecular structure, both of which vary with barley grain size. Grain size is a major industrial specification for selecting barley for brewing. An in-depth study is given of how enzyme activity and starch structure vary with grain size, the impact of these factors on fermentable sugar production, and the underlying mechanisms. Micro-malting and mashing experiments were based on commercial methodologies. Starch molecular structural parameters were obtained using size-exclusion chromatography, and fitted using biosynthesis-based models. Correlation analysis using the resulting parameters showed larger grain sizes contained fewer long amylopectin chains, higher amylase activities and soluble protein level. Medium grain sizes released most sugars during mashing, because of higher starch utilization from the action of amylases, and shorter amylose chains. As starch is the substrate for amylase-driven fermentable sugars production, measuring its structure should be a prime indication for mashing performance, and should be used as an industry specification when selecting barley grains for brewing.


2011 ◽  
Vol 702-703 ◽  
pp. 766-769 ◽  
Author(s):  
A. Ray ◽  
Debalay Chakrabarti

Charpy impact testing (over the transition temperature rage) on different samples of a Ti-microalloyed steel, having the same average-TiN particle size but different average-ferrite grain sizes, showed that in spite of the presence of large TiN cuboides, ferrite grain refinement can significantly improve the impact toughness, provided the meso-texture (i.e. the intensity of low-angle boundaries) and matrix strength can be restricted to low values.


1981 ◽  
Vol 32 (6) ◽  
pp. 935 ◽  
Author(s):  
DR Hudson ◽  
RA Hunter ◽  
DW Peter

Grain size of elemental selenium is a major factor controlling the long-term effectiveness of intraruminal selenium pellets. Microscope studies of polished sections of new and used selenium pellets showed that two commercially manufactured pellets contained selenium with average grain sizes about 4 and 40 �m respectively. Plasma selenium concentrations in sheep treated with pellets containing the coarse-grained selenium were maintained at higher levels over longer periods of time than those measured for sheep treated with pellets with fine-grained selenium. Pellets removed from sheep after 2, 4, 8, 16 and 28 days showed a progressive increase in the degree of alteration of selenium to a compound of average composition (g/100 g) iron, 33.7; selenium, 51.3 ; oxygen, 15.0. After 28 days only a small percentage of elemental selenium remained in pellets with fine-grained selenium, whereas about 50% remained in pellets with coarse-grained selenium. CSIRO prototype pellets, for which long-term effectiveness had been established, also contained coarse-grained selenium, and remnants of selenium were found in pellets that had been in sheep for periods up to 3 years. Selenium, administered in gelatin capsules or as sachets containing glass-selenium mixtures, was stable under the pH-Eh conditions of the rumen, but was rendered unstable in selenium pellets or iron-selenium mixtures by the presence of iron. It is probable that the most rapid release of selenium to the sheep occurs as a result of a chemical reaction involving the oxidation of iron and concomitant alteration of elemental selenium to iron selenide.


2011 ◽  
Vol 117-119 ◽  
pp. 990-994
Author(s):  
Wei Wei ◽  
Zhi Wu Wang ◽  
Mao Lin Liu

Exposed to 650°C air, TP304H stainless steel with two different grain size was oxidized at this temperature. At the meantime, comparison of their oxidation was through the oxidation kinetics curves and analysis of the morphology and composition of oxide scale which conducted by SEM and X-ray. The results showed that the oxidation rate of TP304H stainless steel was slowed down by grain refinement and oxide scale of fine-grained TP304H steel was thinner than that of coarse-grained steel. The nucleation and the growth of nuclei of coarse-grained oxide scale were more rapid. In addition, the grain refinement of austenitic stainless steel accelerated the diffusivity of Cr and made for the formation of dense and continuous oxide scale, so that the oxidation of stainless steel can be effectively inhabited.


MRS Advances ◽  
2016 ◽  
Vol 1 (12) ◽  
pp. 811-816 ◽  
Author(s):  
Myeong-heom Park ◽  
Akinobu Shibata ◽  
Nobuhiro Tsuji

ABSTRACTIt is well-known that dual phase (DP) steels composed of ferrite and martensite have good ductility and plasticity as well as high strength. Due to their excellent mechanical properties, DP steels are widely used in the industrial field. The mechanical properties of DP steels strongly depend on several factors such as fraction, distribution and grain size of each phase. In this study, the grain size effect on mechanical properties of DP steels was investigated. In order to obtain DP structures with different grain sizes, intercritical heat treatment in ferrite + austenite two-phase region was carried out for ferrite-pearlite structures having coarse and fine ferrite grain sizes. These ferrite-pearlite structures with coarse and fine grains were fabricated by two types of heat treatments; austenitizing heat treatment and repetitive heat treatment. Ferrite grain sizes of the specimens heat-treated by austenitizing and repetitive heat treatment were 47.5 µm (coarse grain) and 4.5 µm (fine grain), respectively. The ferrite grain sizes in the final DP structures fabricated from the coarse-grained and fine-grained ferrite-pearlite structures were 58.3 µm and 4.1µm, respectively. The mechanical behavior of the DP structures with different grain sizes was evaluated by an uniaxial tensile test at room temperature. The local strain distribution in the specimens during tensile test was obtained by a digital image correlation (DIC) technique. Results of the tensile test showed that the fine-grained DP structure had higher strength and larger elongation than the coarse-grained DP structure. It was found by the DIC analysis that the fine-grained DP structure showed homogeneous deformation compared with the coarse-grained DP structure.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Renjie Wen ◽  
Cai Tan ◽  
Yong Wu ◽  
Chen Wang

Biaxial compression tests with the same specimen size and different maximum grain sizes were simulated for coarse-grained soils using the discrete element method to study the influence of grain size on the mechanical properties and force chain. The maximum grain sizes were 40, 20, 10, and 5 mm, respectively. The grading with self-similar fractal structure in mass is designed to ensure the same pore structure for soils. The shear strength increased with the increase in maximum grain size. Evident increase in shear strength and significant size effect were observed when the ratio of the specimen diameter to maximum grain size was less than five. The shear dilation of coarse-grained soils increases with the increase in maximum grain size. The contact force distribution was uniform when maximum grain size was small but tends to be uneven with the increase in maximum grain size, thereby causing the increase in shear strength by stable strong force chains. This finding demonstrates size effect on the mechanical properties and force chain of cohesionless coarse-grained soils under the biaxial compression condition.


2010 ◽  
Vol 654-656 ◽  
pp. 294-297 ◽  
Author(s):  
Ghasem Dini ◽  
Rintaro Ueji ◽  
Abbas Najafizadeh

The effect of grain size on the flow stress in TWinning Induced Plasticity (TWIP) steel was investigated via the X-ray diffraction (XRD) measurements of dislocation density. The results indicated that the hardening behavior of fine grained samples (mean grain sizes in the range of 2.1-3.8μm) can be described as typical dislocation interactions. However in coarse grained samples (mean grain sizes in the range of 4.7-38.5μm) where extensive mechanical twinning occurs, another strengthening mechanism is required. Consequently, the effect of grain size on the flow stress parameters of the proposed equation was considered and it was found that in the fine grained samples, the Holloman analysis can describe the hardening behavior. However, in coarse grained samples, a second hardening term due to the strengthening effect of mechanical twin boundaries needs to be added to the Holloman equation.


Author(s):  
Ge He ◽  
Yangqing Dou ◽  
Xiang Guo ◽  
Yucheng Liu

Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 μm), regular copper (grain size ≈ 30 μm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance then the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT regions-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive material model is used to predict the plastic deformation of Cu and Ni; JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material’s failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.


Sign in / Sign up

Export Citation Format

Share Document