scholarly journals Forward modelling of MHD waves in braided magnetic fields

2020 ◽  
Vol 643 ◽  
pp. A86
Author(s):  
L. E. Fyfe ◽  
T. A. Howson ◽  
I. De Moortel

Aims. We investigate synthetic observational signatures generated from numerical models of transverse waves propagating in complex (braided) magnetic fields. Methods. We consider two simulations with different levels of magnetic field braiding and impose periodic, transverse velocity perturbations at the lower boundary. As the waves reflect off the top boundary, a complex pattern of wave interference occurs. We applied the forward modelling code FoMo and analysed the synthetic emission data. We examined the line intensity, Doppler shifts, and kinetic energy along several line-of-sight (LOS) angles. Results. The Doppler shift perturbations clearly show the presence of the transverse (Alfvénic) waves. However, in the total intensity, and running difference, the waves are less easily observed for more complex magnetic fields and may be indistinguishable from background noise. Depending on the LOS angle, the observable signatures of the waves reflect some of the magnetic field braiding, particularly when multiple emission lines are available, although it is not possible to deduce the actual level of complexity. In the more braided simulation, signatures of phase mixing can be identified. We highlight possible ambiguities in the interpretation of the wave modes based on the synthetic emission signatures. Conclusions. Most of the observables discussed in this article behave in the manner expected, given knowledge of the evolution of the parameters in the 3D simulations. Nevertheless, some intriguing observational signatures are present. Identifying regions of magnetic field complexity is somewhat possible when waves are present; although, even then, simultaneous spectroscopic imaging from different lines is important in order to identify these locations. Care needs to be taken when interpreting intensity and Doppler velocity signatures as torsional motions, as is done in our setup. These types of signatures are a consequence of the complex nature of the magnetic field, rather than real torsional waves. Finally, we investigate the kinetic energy, which was estimated from the Doppler velocities and is highly dependent on the polarisation of the wave, the complexity of the background field, and the LOS angles.

2020 ◽  
Vol 642 ◽  
pp. A210
Author(s):  
Roberta Morosin ◽  
Jaime de la Cruz Rodríguez ◽  
Gregal J. M. Vissers ◽  
Rahul Yadav

Context. The role of magnetic fields in the chromospheric heating problem remains greatly unconstrained. Most theoretical predictions from numerical models rely on a magnetic configuration, field strength, and connectivity; the details of which have not been well established with observational studies for many chromospheric scenarios. High-resolution studies of chromospheric magnetic fields in plage are very scarce or non existent in general. Aims. Our aim is to study the stratification of the magnetic field vector in plage regions. Previous studies predict the presence of a magnetic canopy in the chromosphere that has not yet been studied with full-Stokes observations. We use high-spatial resolution full-Stokes observations acquired with the CRisp Imaging Spectro-Polarimeter (CRISP) at the Swedish 1-m Solar Telescope in the Mg I 5173 Å, Na I 5896 Å and Ca II 8542 Å lines. Methods. We have developed a spatially-regularized weak-field approximation (WFA) method, based on the idea of spatial regularization. This method allows for a fast computation of magnetic field maps for an extended field of view. The fidelity of this new technique has been assessed using a snapshot from a realistic 3D magnetohydrodynamics simulation. Results. We have derived the depth-stratification of the line-of-sight component of the magnetic field from the photosphere to the chromosphere in a plage region. The magnetic fields are concentrated in the intergranular lanes in the photosphere and expand horizontally toward the chromosphere, filling all the space and forming a canopy. Our results suggest that the lower boundary of this canopy must be located around 400 − 600 km from the photosphere. The mean canopy total magnetic field strength in the lower chromosphere (z ≈ 760 km) is 658 G. At z = 1160 km, we estimate ⟨B∥⟩ ≈ 417 G. Conclusions. In this study we propose a modification to the WFA that improves its applicability to data with a worse signal-to-noise ratio. We have used this technique to study the magnetic properties of the hot chromospheric canopy that is observed in plage regions. The methods described in this paper provide a quick and reliable way of studying multi layer magnetic field observations without the many difficulties inherent to other inversion methods.


2020 ◽  
Vol 72 (2) ◽  
Author(s):  
Yoshiaki Sofue

Abstract Propagation of fast-mode magnetohydrodynamic (MHD) compression waves is traced in the Galactic Center with a poloidal magnetic cylinder. MHD waves ejected from the nucleus are reflected and guided along the magnetic field, exhibiting vertically stretched fronts. The radio threads and non-thermal filaments are explained as due to tangential views of the waves driven by sporadic activity in Sgr A$^*$, or by multiple supernovae. In the latter case, the threads could be extremely deformed relics of old supernova remnants exploded in the nucleus.


Author(s):  
Mats Carlsson ◽  
Thomas J Bogdan

Acoustic waves are generated by the convective motions in the solar convection zone. When propagating upwards into the chromosphere they reach the height where the sound speed equals the Alfvén speed and they undergo mode conversion, refraction and reflection. We use numerical simulations to study these processes in realistic configurations where the wavelength of the waves is similar to the length scales of the magnetic field. Even though this regime is outside the validity of previous analytic studies or studies using ray-tracing theory, we show that some of their basic results remain valid: the critical quantity for mode conversion is the angle between the magnetic field and the k-vector: the attack angle. At angles smaller than 30° much of the acoustic, fast mode from the photosphere is transmitted as an acoustic, slow mode propagating along the field lines. At larger angles, most of the energy is refracted/reflected and returns as a fast mode creating an interference pattern between the upward and downward propagating waves. In three-dimensions, this interference between waves at small angles creates patterns with large horizontal phase speeds, especially close to magnetic field concentrations. When damping from shock dissipation and radiation is taken into account, the waves in the low–mid chromosphere have mostly the character of upward propagating acoustic waves and it is only close to the reflecting layer we get similar amplitudes for the upward propagating and refracted/reflected waves. The oscillatory power is suppressed in magnetic field concentrations and enhanced in ring-formed patterns around them. The complex interference patterns caused by mode-conversion, refraction and reflection, even with simple incident waves and in simple magnetic field geometries, make direct inversion of observables exceedingly difficult. In a dynamic chromosphere it is doubtful if the determination of mean quantities is even meaningful.


1971 ◽  
Vol 43 ◽  
pp. 3-23 ◽  
Author(s):  
Jacques M. Beckers

The different methods which have been used, or which may be used in the future, to measure solar magnetic fields are described and discussed. Roughly these can be divided into three groups (a) those which use the influence of the magnetic field on the electromagnetic radiation, (b) those which use the influence of the field on the structure of the solar atmosphere (MHD effects), and (c) those which use theoretical arguments. The former include the Zeeman effect, the Hanle effect, the gyro and synchrotron radiations and the Faraday rotation of radiowaves. The second includes the alignment of details at all levels of the solar atmosphere, and the calcium network, and the third makes use, for example, of the assumption of equipartition between magnetic and kinetic energy density.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


2016 ◽  
Vol 791 ◽  
pp. 568-588 ◽  
Author(s):  
Andrew D. Gilbert ◽  
Joanne Mason ◽  
Steven M. Tobias

In the process of flux expulsion, a magnetic field is expelled from a region of closed streamlines on a $TR_{m}^{1/3}$ time scale, for magnetic Reynolds number $R_{m}\gg 1$ ($T$ being the turnover time of the flow). This classic result applies in the kinematic regime where the flow field is specified independently of the magnetic field. A weak magnetic ‘core’ is left at the centre of a closed region of streamlines, and this decays exponentially on the $TR_{m}^{1/2}$ time scale. The present paper extends these results to the dynamical regime, where there is competition between the process of flux expulsion and the Lorentz force, which suppresses the differential rotation. This competition is studied using a quasi-linear model in which the flow is constrained to be axisymmetric. The magnetic Prandtl number $R_{m}/R_{e}$ is taken to be small, with $R_{m}$ large, and a range of initial field strengths $b_{0}$ is considered. Two scaling laws are proposed and confirmed numerically. For initial magnetic fields below the threshold $b_{core}=O(UR_{m}^{-1/3})$, flux expulsion operates despite the Lorentz force, cutting through field lines to result in the formation of a central core of magnetic field. Here $U$ is a velocity scale of the flow and magnetic fields are measured in Alfvén units. For larger initial fields the Lorentz force is dominant and the flow creates Alfvén waves that propagate away. The second threshold is $b_{dynam}=O(UR_{m}^{-3/4})$, below which the field follows the kinematic evolution and decays rapidly. Between these two thresholds the magnetic field is strong enough to suppress differential rotation, leaving a magnetically controlled core spinning in solid body motion, which then decays slowly on a time scale of order $TR_{m}$.


Sign in / Sign up

Export Citation Format

Share Document