scholarly journals Low homology between 2019-nCoV Orf8 protein and its SARS-CoV counterparts questions their identical function

2021 ◽  
Vol 30 ◽  
pp. 05008
Author(s):  
Viktoria Iatsenko ◽  
Konstantin Boyarshin ◽  
Olga Bespalova ◽  
Violetta Klyueva ◽  
Yuliya Kurkina ◽  
...  

SARS-CoV accessory protein Orf8b is involved in suppressing interferon-mediated immune response of the infected cell and this might lead to supposition that the corresponding protein 2019-nCoV Orf8 shares the same role. But the tertiary structures of these proteins are still unknown, and the primary structures demonstrate very low homology and different calculating parameters. This time they both are affected by stabilizing selection and in natural viral populations do not tend to be deleted. The question whether in this case very different proteins could share the same function rises from the present data.

Author(s):  
Alia Benkahla ◽  
Lamia Guizani-Tabbane ◽  
Ines Abdeljaoued-Tej ◽  
Slimane Ben Miled ◽  
Koussay Dellagi

This chapter reports a variety of molecular biology informatics and mathematical methods that model the cell response to pathogens. The authors first outline the main steps of the immune response, then list the high throughput biotechnologies, generating a wealth of information on the infected cell and some of the immune-related databases; and finally explain how to extract meaningful information from these sources. The modelling aspect is divided into modelling molecular interaction and regulatory networks, through dynamic Boolean and Bayesian models, and modelling biochemical networks and regulatory networks, through Differential/Difference Equations. The interdisciplinary approach explains how to construct a model that mimics the cell’s dynamics and can predict the evolution and the outcome of infection.


2021 ◽  
Author(s):  
Alejandro Padilla

The large families of amastins from Leishmania donovani, L. infantum, L. major, L. braziliensis and Trypanosoma cruzi are strongly associated with the evolution of intracellular parasitism of rich cells in human MHC.1 molecules such as the macrophages, dendritic cells, and Langerhans cells by these parasites, recognize the MHC-1 molecules as host receptor. The internalization and transport of the paraste in the cytoplas of infected cell is facilitated by the MHC-1 recycle and endosome formation drag and transport the parasite in the cytoplasm of infected cell. The microbody amastins participate as coreceptor potency the infection, the tropism of L. major and L. braziliensis by the cells from the skin is facilitated by two molecular interactions, the first molecular interaction is faclitated by the amastins interact the human MHC-1 molecules, and the second molecular interaction is facilitated by the numerous microbody amastins; which also participate in the biogenesis of the small prasitophorous vcuole from L. major, and large parasitophorous vacuole from L. braziliensis. All amastins from these parasites developed deactivation domains, in different grade L. donovani develop an amastin surface coat specialized in deactivation of infected macrophages heavily glycosylated developed 38 amastins with 38 glycosylation Asp. N-Glycosylation sites and 45 N-glucosamina glycosylation sites, whereas L. infantum, L. major and L. braziliensis developed one half of glycosylated amastins in asparagine N-glycosylation sites, and T. cruzi did not developed none glycosylated amastin. The amastins surface coat from L. donovani is rich in phosphorylation sites, developed 45 amastins with 45 casein kinase II phosphorylations sites, and 48 amastins with 48 protein kinase phosphorylation sites. L. infantum, L. braziliensis, and T. cruzi developed 32, 42, and 8 amastins, with 94, 114, 21 casein kinase II phosphorylation sites; in similar way developed 35, 38, 11 amastins with 89, 78, and 22 protein kinase phosphorylation sites. The family of amastins from L. donovani develop 137 phosphoserines. and 128 phosphothreonine, L. major developed 14 phosphoserine and 4 phosphothreonine; L. infantum 1 phophoserine and 7 phosphothreonine; L. braziliensis did not developed phosphoserine and phosphothreonine and T. cruzi 4 phosphoserine and 4 phosphothreonine. The results show that amastin surface coat is equiped with numerous phosphorylations sites atractive for phosphohrylases from the infected host contribute with the dephosphorylation and deactivation of infectetd host cells. The amastins from L. major develop a membrane amastin with laminin G domain, which can interact with the collagen and heparin sulfate proteoglycan sites from the extracellular matrix of the skin tissue. Furthermore develop 14 amastins with tyrosine sulfation site, evade the activation of receptor of chemokines and the activation of the immune response by chemokines. There is an alternative mechanism of polarization of the immune response from protective TH1 to non protective TH2. The parasite nutrition is mediated by amastins that dissimilate the MHC-1 molecules and other subsets of proteins, the dissimilation products can be translocated through of the parasite cell membrane and employed as nutrient source.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Zaikun Xu ◽  
Robert Lodge ◽  
Christopher Power ◽  
Eric A. Cohen ◽  
Tom C. Hobman

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors. IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis.


2020 ◽  
Author(s):  
Srikeerthana Kuchi ◽  
Quan Gu ◽  
Massimo Palmarini ◽  
Sam J Wilson ◽  
David L Robertson

AbstractThe clinical outcome of COVID-19 has an extreme age, genetic and comorbidity bias that is thought to be driven by an impaired immune response to SARS-CoV-2, the causative agent of the disease. The unprecedented impact of COVID-19 on global health has resulted in multiple studies generating a variety of large gene expression datasets in a relatively short period of time. In order to better understand the immune dysregulation induced by SARS-CoV-2, we carried out a meta-analysis of these transcriptomics data available in the published literature. Datasets included both those available from SARS-CoV-2 infected cell lines in vitro and those from patient samples. We focused our analysis on the identification of viral perturbed host functions as captured by co-expressed gene module analysis. Transcriptomics data from lung biopsies and nasopharyngeal samples, as opposed to those available from other clinical samples and infected cell lines, provided key signatures on the role of the host’s immune response on COVID-19 pathogenesis. For example, severity of infection and patients’ age are linked to the absence of stimulation of the RIG-I-like receptor signaling pathway, a known critical immediate line of defense against RNA viral infections that triggers type-I interferon responses. In addition, co-expression analysis of age-stratified transcriptional data provided evidence that signatures of key immune response pathways are perturbed in older COVID-19 patients. In particular, dysregulation of antigen-presenting components, down-regulation of cell cycle mechanisms and signatures of hyper-enriched monocytes were strongly correlated with the age of older individuals infected with SARS-CoV-2. Collectively, our meta-analysis highlights the ability of transcriptomics and gene-module analysis of aggregated datasets to aid our improved understanding of the host-specific disease mechanisms underpinning COVID-19.


2002 ◽  
Vol 277 (39) ◽  
pp. 35915-35919 ◽  
Author(s):  
Sandrine Opi ◽  
Jean-Marie Péloponèse ◽  
Didier Esquieu ◽  
Grant Campbell ◽  
Jean de Mareuil ◽  
...  

2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Jakub Wiedemann ◽  
Maciej Miłostan

In the world of RNAs and proteins similarities on the level of primary structures of two comparable molecules usually correspond to structural similarities on the tertiary level. In other words, measures of sequence and structure similarities are in general correlated – high value of sequence similarity impose high value of structural similarity. However important exceptions  that stay in contrary with the general rule can be identified. It is possible to find similar structures with very different sequences and also similar sequences with very different structures. In this paper we focus attention on the latter case and propose  a tool, called StructAnalyzer, supporting analysis of relations between sequence and structure similarities. Recognition of diversity of tertiary structures of molecules with very similar primary structures may be the key for better understanding of mechanisms influencing folding of RNA or proteins and as result their function. StructAnalyzer allows exploration and visualization of structural diversity in relation to sequence similarity. We show how the tool can be used to screen RNA structures in PDB for sequences with structural variants.


2021 ◽  
Author(s):  
Yuming Li ◽  
Yingkang Jin ◽  
Lijun Kuang ◽  
Zhenhua Luo ◽  
Fang Li ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) is a beta coronavirus that emerged in 2012, causing severe pneumonia and renal failure. MERS-CoV encodes five accessory proteins. Some of them have been shown to interfere with host antiviral immune response. However, the roles of protein 8b in innate immunity and viral virulence was rarely studied. Here, we introduced individual MERS-CoV accessory protein genes into the genome of an attenuated murine coronavirus (Mouse hepatitis virus, MHV), respectively and found accessory protein 8b could enhance viral replication in vivo and in vitro , and increase the lethality of infected mice. RNA-seq analysis revealed that protein 8b could significantly inhibit type I interferon production (IFN-I) and innate immune response in mice infected with MHV expressing protein 8b. We also found that MERS-CoV protein 8b could initiate from multiple internal methionine sites and at least three protein variants were identified. Residues 1-23 of protein 8b was demonstrated to be responsible for increased virulence in vivo . In addition, the inhibitory effect on IFN-I of protein 8b might not contribute to its virulence enhancement as aa1-23 deletion did not affect IFN-I production in vitro and in vivo . Next, we also found that protein 8b was localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, which was disrupted by C-terminal region aa 88-112 deletion. This study will provide new insight into the pathogenesis of MERS-CoV infection. IMPORTANCE Multiple coronaviruses (CoV) cause severe respiratory infections and become global public health threats such as SARS-CoV, MERS-CoV, and SARS-CoV-2. Each coronavirus contains different numbers of accessory proteins which show high variability among different CoVs. Accessory proteins are demonstrated to play essential roles in pathogenesis of CoVs. MERS-CoV contains 5 accessory proteins (protein 3, 4a, 4b, 5, 8b), and deletion of all four accessory proteins (protein 3, 4a, 4b, 5), significantly affects MERS-CoV replication and pathogenesis. However, whether ORF8b also regulates MERS-CoV infection is unknown. Here, we constructed mouse hepatitis virus (MHV) recombinant virus expressing MERS-CoV protein 8b and demonstrated protein 8b could significantly enhance the virulence of MHV, which is mediated by N-terminal domain of protein 8b. This study will shed light on the understanding of pathogenesis of MERS-CoV infection.


2006 ◽  
Vol 13 ◽  
pp. S24-S25
Author(s):  
Ianko D. Iankov ◽  
Boris R.A. Blechacz ◽  
Guy E. Griesmann ◽  
Mark J. Federspiel ◽  
Stephen J. Russell

Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


Sign in / Sign up

Export Citation Format

Share Document