scholarly journals Simulation of the magnetic system of a linear motor for a delimber

2021 ◽  
Vol 37 ◽  
pp. 00097
Author(s):  
Sergey Antonov ◽  
Gennady Nikitenko ◽  
Andrey Adoshev ◽  
Igor Devederkin ◽  
Alexey Efanov

The existing pruning shears and delimbers have many drawbacks that limit their widespread use in the production process. These are such disadvantages as large weight and dimensions, high power consumption, vibration and noise, low mobility due to being tied to an energy source. DC motors are used to drive the cutting blades. Their main disadvantage is the low operational reliability of such an element as electric brushes. The use of the kinematic transformation of the rotational motion of the electric motor into the reciprocating motion of the blades reduces the overall efficiency of the device and increases the consumption of electrical energy. The proposed linear electric motor for the delimber drive will increase the efficiency, operational reliability and reduce energy consumption for cutting tree branches. A feature of a linear electric motor is the use of two magnetizing coils, which are switched on alternately. The use of a thin element in the magnetic system makes it possible to redistribute the obtained magnetic flux towards the armature of the linear electric motor. The armature of the electric motor consists of magnetic and nonmagnetic bushings of a certain design. This allows you to obtain a magnetic flux, which, passing along the armature, creates an electromagnetic force that sets it in motion. The cutting blade is then anchored. This allows you to improve the characteristics of the proposed delimber. The main challenge in the design of the delimber is to create the maximum force on the cutting blade required to cut branches. For this, it is necessary to perform an improvement of the magnetic system of the linear electric motor. For this purpose, the simulation of the magnetic system was carried out in the ElCut program.

Author(s):  
Igors Stroganovs ◽  
Andrejs Zviedris

Basic Statements of Research and Magnetic Field of Axial Excitation Inductor GeneratorIn this work the main features of axial excitation inductor generators are described. Mathematical simulation of a magnetic field is realized by using the finite element method. The objective of this work is to elucidate how single elements shape, geometric dimensions and magnetic saturation of magnetic system affect the main characteristics of the field (magnetic induction, magnetic flux linkage). The main directions of a magnetic system optimization are specified.


2018 ◽  
Vol 239 ◽  
pp. 01036 ◽  
Author(s):  
Viktor Kharlamov ◽  
Pavel Shkodun ◽  
Andrey Ognevsky

Effective use of fuel and energy resources is one of the main tasks in modern industry and transport. The main directions of increasing the energy efficiency of the electric rolling stock of railways are considered in the paper. For the electric rolling stock of railways, a significant proportion of electric power consumption falls on traction needs. The consumption of electrical energy and its recovery directly depends on the proper operation and fine-tuning of the magnetic system and switching of traction electric motors of the rolling stock. The methods of testing traction electric motors currently used in railway transport do not fully correspond to their operating modes during operation. For more reliable control of their condition, a methodology for estimating the nature of the operation of traction electric motors in conditions close to real ones was proposed. Studies of the influence of transient processes on the quality of switching of traction electric motors taking into account operating conditions are carried out. Based on the results of the study, the analysis of the data obtained is carried out, and a criterion for estimating the switching stability of traction electric motors in transient operation modes is proposed. The proposed criterion allows carrying out quality control of the tuning of the magnetic system and switching of the traction electric motor, and also estimating the nature of its operation in various modes, taking into account the operating conditions.


2021 ◽  
Vol 7 (7) ◽  
pp. 19-25
Author(s):  
Andrey V. NAUMOV ◽  
◽  
Alexey V. POLYAKOV ◽  
Mikhail I. SURIN ◽  
Vladimir I. SHCHERBAKOV ◽  
...  

The electromechanical model for analyzing a homopolar electric motor with a magnetic system made using second-generation high-temperature superconductors (HTSC 2G) is described. Homopolar electric motors made with a disk-shaped rotor have the simplest design of their magnetic system and heavy-current contact. Owing to the use of HTSC 2G conductors for producing constant magnetic field in the rotor area, it becomes possible to achieve a higher current density in the windings, thereby increasing the motor power capacity. Due to the HTSC ability to operate at the liquid nitrogen temperature (77 K), it becomes possible to have a simpler cryostat design in comparison with magnetic systems based on low-temperature superconductors. For large-capacity homopolar motors, the use of liquid metal contacts for supplying current to the rotating rotor seems to be the most promising design solution. The advantage of motors of this type is that their torque depends linearly on the rotor current. The homopolar motor operation governed by a proportional-integral-differentiating (PID) controller was simulated using the SciLab Xcos software. The application of the analysis model for selecting the optimal PID-controller coefficients is demonstrated. The electric motor dynamic operation modes are analyzed. The numerical simulation results are compared with the previously obtained experimental data.


2019 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Syarif Moh Rofiq Al- Ghony ◽  
Subuh Isnur Haryudo ◽  
Jati Widyo Leksono

The electric motor is a device that serves to transform electrical energy into mechanical energy of motion. In this case the designed control system motor 3 phase by Smartphones through bluetooth network to find out the effective range of extremity. The methods used in the form of data capture of measurement effective range the furthest that can be reached by bluetooth to activate relay SPDT and motor 3 phase. Results of testing the most effective distance of the otomasisasi control system of motor 3 phase maximum as far as 15 meters with a time of pause 0.5 seconds.


2017 ◽  
Author(s):  
◽  
Shaveen Maharaj

Industrial plants are excellent sources of waste heat and provide many opportunities for energy harvesting using thermo-electric principles. A thermoelectric generator (TEG) is utilized in this study for harvesting expended heat from various sources. The main challenge associated with this type of technology lies in the creation of a sufficient thermal gradient between the hot side and the cold side of the TEG device. This is necessary for the module to generate an appreciable quantity of electrical energy. The performance of the TEG generator is tested using different configurations, different heat sources and different cooling methods. Heat sources included electrically driven devices, gas, biomass and gel fuel. Expended heat from different sites within an industrial environment was also chosen for operating the TEG device. The power produced by the generator is sufficient to operate low power LED lights, a DC radio receiver and a cellular phone charger.


2013 ◽  
Vol 336-338 ◽  
pp. 1266-1270
Author(s):  
Wei Xiong Wu ◽  
Yun Zhao ◽  
Jie Qiang Zhao

Forced ventilation has more accuracy in climate control of agricultural greenhouses. It is worthwhile to apply some energy saving measures to overcome the disadvantage of high power consumption in fan driving of forced ventilation. Here we present a new developed controller based on PLC which mainly can control the ventilation fans rotation speed in combination with variable frequency drive except for manipulating other facilities in greenhouse like pad, shading screen etc. The control system integrates a sense module which measuring solar radiation, temperature and humidity inside and outside of greenhouse, an actuating module which includes variable frequency drive, pad control and radiation screens to perform a optimized cooling strategy to reduce electrical energy consumption by low down the fans rotation speed with ambient condition changes.


2016 ◽  
Vol 836 ◽  
pp. 20-25
Author(s):  
Sigit Iswahyudi ◽  
Wandi Arnandi

An initial study of manipulated electric motor design to produce one axis thrust force without rotation was conducted. A cylindrical electromagnetic propulsion system has a diameter of 75 mm and a height of 90 mm made of ST 60 steel was tested. The system has a coil as conductor carrying current to produce thrust force and a coil to produce magnetic flux in its inner part. There were three windings of coils producing forces have effective diameter of 32 mm that were varied in their loops distance. The coil producing magnetic flux has 148 windings of 1 mm isolated cable on ferrite core. The thrust forces produced by the specimen were tested by measuring its weight change when one of or both of the coils were opened and/or closed circuit.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Fatemehzahra Gholami Tirkolaei ◽  
Faramarz E. Seraji

<p>Wireless sensor network consists of hundred or thousand sensor nodes that are connected together and work simultaneously to perform some special tasks. The restricted energy of sensor nodes is the main challenge in wireless sensor network as node energy depletion causes node death. Therefore, some techniques should be exerted to reduce energy consumption in these networks. One of the techniques to reduce energy consumptions most effectively is the use of clustering in wireless sensor networks.</p><p>There are various methods for clustering process, among which LEACH is the most common and popular one. In this method, clusters are formed in a probabilistic manner. Among clustering strategies, applying evolutional algorithm and fuzzy logic simultaneously are rarely taken into account. The main attention of previous works was energy consumption and less attention was paid to delay.</p><p>In the present proposed method, clusters are constructed by an evolutional algorithm and a fuzzy system such that in addition to a reduction of energy consumption, considerable reduction of delay is also obtained. The simulation results clearly reveal the superiority of the proposed method over other reported approaches.</p>


2019 ◽  
Vol 19 (1) ◽  
pp. 165-176
Author(s):  
Danail Slavov

Abstract Estimating the speed and position using measurable electrical parameters would allow establishment of sensorless control systems for brushless DC motors, without the need to use expensive sensors for the rotor position and speed. When the motor is running, it heats up and the stator resistance rises. This heat-dependent change needs to be reflected in the observer, as it would produce an error in rated speed and position. An adaptive algorithm can compensate for the change of resistance as a disturbing effect of the motor heating. The adaptive algorithm for estimating the resistance is synthesized using the function of Lyapunov. This article is useful for estimation of brushless electric motor speed and position with observer. It contains simulations with an adaptive observer of resistance for sensorless estimation of speed and position in brushless DC motor through measurement of voltage and current.


2021 ◽  
Vol 2 (53) ◽  
pp. 40-46
Author(s):  
I. Sinchuk ◽  
◽  
I. Peresunko ◽  
A. Somochkyn

Purpose. The paper analyzes the system and methods of starting synchronous electric motors of fans of the main ventilation of iron ore mines. It is concluded that it is necessary to modernize the method of starting a synchronous electric motor, despite the fact that the installed direct start-up system has a number of disadvantages, and negatively affects the energy indicators of the electromechanical complex of the main ventilation fan of mines. The priority direction in solving the complex of the above problems is the use of modern achievements in the field of semiconductor conversion technology, in terms of the development of effective circuits and methods for starting and controlling a synchronous electric drive. Originality. The method of separate regulation of size and frequency of output voltage of the multilevel converter of a clock at quasi-frequency start of the synchronous electric drive is offered, limits admissible values of starting currents to admissible values. Methodology. Simulation of transient processes of starting a synchronous electric motor with step-by-step changes in voltage and frequency of supply, which made it possible to determine the energy efficiency of this method. Result. A new method of starting with a step-by-step change in the voltage and frequency of a synchronous motor is proposed. The modeling of the proposed starting method for a synchronous electric motor with a fan torque on the motor shaft was carried out, while it allowed to get rid of the main drawback, namely, a large starting current and made it possible to increase the energy efficiency of the electromechanical complex of the main ventilation fans due to the fact that the consumed active energy during start-up will decrease approximately 50% compared to a direct starting system. Practical value. The proposed method and the obtained results of the study made it possible to prove that the effectiveness of the proposed method is very high and this will save most of the electrical energy when starting the fans of the main ventilation of iron ore mines. Figures 15, references 15


Sign in / Sign up

Export Citation Format

Share Document