scholarly journals Plumbotectonics of Moroccan ore deposits

Author(s):  
Eric MARCOUX ◽  
Michel JEBRAK

The synthesis of 240 lead isotopes analyzes, measured on Moroccan ore deposits of Ediacarian to Neogene ages located in all geotectonic domains of Morocco allows a global reflection on the metallogeny of Morocco. The isotopic compositions vary widely, from 17.738 (Bou Skour) to 18.905 (Draa Sfar) for the 206Pb/204Pb ratio, and from 15.521 to 15.706 for the 207Pb/204Pb ratio. The source of lead in the studied deposits is located in the upper continental crust, except for those in the Anti-Atlas (Bou Skour, Imiter, etc.) and some in the High Atlas (Azegour) with a clear mantellic contribution. Isotopic variations noted at the scale of a district result either from the presence of several superimposed hydrothermal events calling upon different local sources as at Tighza, or from a single event disturbed by the segmentation of a volcanosedimentary basin, as for the Jebilet and Guemassa ore deposits. At the scale of the deposit (Draa Sfar, Bou Skour), isotopic variations result from the superposition of several hydrothermal events each with their own lead and associated metals. Overall, we can distinguish three generations of lead incorporated successively into the Moroccan geological base by magmatism and / or hydrothermalism, characterized by their 206Pb/204Pb ratios: 17.74-17.90 (Ediacarian), 18.10-18.40 (Hercynian) and 18.75-18.90 (Alpine). Ediacarian lead is present in the Anti-Atlas, and very locally in the meseta (Bouznika), and feeds in part on the mafic magmatism of Gondwana. Hercynian lead is the most represented and displays a definitive rupture in the source of metals, which is now exclusively crustal. It invades all Moroccan areas, including the Anti-Atlas, where it re-mobilizes and mixes with the Ediacaran lead. Alpine lead, more discreet, marks out the large scarf going from Agadir to Nador which traces on the surface the mantle plume of the Canaries and accompanies a Neogene magmatism which may also have acted as a simple engine remobilizing Hercynian lead, in particular to form MVT deposits from Touissit. The Hercynian and Alpine lead influxes are partly responsible for resetting the mineralizations, as at Bou Azzer or Imiter. In the Sawkins’s model, lead isotopic results support successive remobilisations of lead stored in primary and secondary tanks, as well as inheritance phenomena. Finally, the good transfer of the isotopic signature of lead from deposits to surface gossans shows that the isotopic geochemistry of lead is a useful tool for mineral exploration in Morocco.

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 156 ◽  
Author(s):  
Abderrahim Essaifi ◽  
Kathryn Goodenough ◽  
Fernando Tornos ◽  
Abdelhak Outigua ◽  
Abdelmalek Ouadjou ◽  
...  

This work provides an overview of the geological, geochemical, and metallogenic data available up to date on the Moroccan massive sulphide deposits, including some new results, and then discusses the evidences for the epigenetic and syngenetic hypotheses. All of the ore deposits are located within a crustal block located at the intersection between two major shear zones and are characterized by a sustained and long-lived magmatic activity. The ore deposits are located within second-order shear zones, which played an important role in controlling the geometry of the mineralization. The mineralization lacks the unequivocal textural and structural features that are indicative of a sedimentary or diagenetic origin, and a syntectonic to late-tectonic pyrite-rich assemblage is superimposed on an earlier, pretectonic to syntectonic pyrrhotite-rich mineralization. Each deposit has a distinctive pyrrhotite sulfur isotopic signature, while the sulfur isotopic signature of pyrite is similar in all deposits. Lead isotopes suggest a shift from a magmatic source during the pyrrhotite-rich mineralization to a source that is inherited from the host shales during the pyrite-rich mineralization. The O/H isotopic signatures record a predominance of fluids of metamorphic derivation. These results are consistent with a model in which an earlier pyrrhotite-rich mineralization, which formed during transtension, was deformed and then remobilized to pyrite-rich mineralization during transpression.


Author(s):  
Céline Tomczyk ◽  
Kévin Costa ◽  
Alain Giosa ◽  
Patrice Brun ◽  
Christophe Petit

The question of sources of metal supply and the resulting trade circuits are at the heart of archaeological issues. Provenance studies using lead isotopy has been used since the 1980s to identify the ore deposits from which the metal composing an archaeological object is derived. Indeed, metallurgical processes do not affect the isotopic signature of lead, which remains unchanged between ore and finished product. However, such studies require mineral signature repositories. Archaeologists have therefore built up databases, rich in thousands of analyses. However, these databases only very rarely include gitological information. In addition, lead isotopes are also used in geology but in order to characterize the metallogenic phenomena that lead to the creation of ore deposits. This different type of study requires different sampling: unlike archaeological databases, which include many analyses by mine, geological repositories have very few measurements by deposit. However, although containing few analyses per mine, geological data allow reflection in terms of restricted mineralized subsets and observation of marked groupings in binary diagrams as well as in multidimensional projection. The integration of gitological contexts as qualitative data could thus avoid the problems of statistical discrimination that are common in studies of the provenance of archaeological artifacts. The databases created by geologists, which also count thousands of mineral analyses, can thus be perfectly integrated into production source tracing studies. The finesse of the statistical breakdowns provided by gitological data also opens up new possibilities for data processing through the use of multivariate statistics. Geographical uncertainties are then a function of the quality of the available gitological metadata. Lead isotopic analyses carried out as part of geological studies have much to contribute to the tracing of archaeological production sources.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 347
Author(s):  
Carsten Laukamp ◽  
Andrew Rodger ◽  
Monica LeGras ◽  
Heta Lampinen ◽  
Ian C. Lau ◽  
...  

Reflectance spectroscopy allows cost-effective and rapid mineral characterisation, addressing mineral exploration and mining challenges. Shortwave (SWIR), mid (MIR) and thermal (TIR) infrared reflectance spectra are collected in a wide range of environments and scales, with instrumentation ranging from spaceborne, airborne, field and drill core sensors to IR microscopy. However, interpretation of reflectance spectra is, due to the abundance of potential vibrational modes in mineral assemblages, non-trivial and requires a thorough understanding of the potential factors contributing to the reflectance spectra. In order to close the gap between understanding mineral-diagnostic absorption features and efficient interpretation of reflectance spectra, an up-to-date overview of major vibrational modes of rock-forming minerals in the SWIR, MIR and TIR is provided. A series of scripts are proposed that allow the extraction of the relative intensity or wavelength position of single absorption and other mineral-diagnostic features. Binary discrimination diagrams can assist in rapidly evaluating mineral assemblages, and relative abundance and chemical composition of key vector minerals, in hydrothermal ore deposits. The aim of this contribution is to make geologically relevant information more easily extractable from reflectance spectra, enabling the mineral resources and geoscience communities to realise the full potential of hyperspectral sensing technologies.


2021 ◽  
Author(s):  
Filipa Luz ◽  
António Mateus ◽  
Ezequiel Ferreira ◽  
Colombo G. Tassinari ◽  
Jorge Figueiras

Abstract The boundary in the Iberian Pyrite Belt is a world-class metallogenic district developed at the Devonian-Carboniferous boundary the Iberian Variscides that currently has seven active mines: Neves Corvo (Cu-Zn-Sn) and Aljustrel (Cu-Zn) in Portugal, and Riotinto (Cu), Las Cruces (Cu), Aguas Teñidas (Cu-Zn-Pb), Sotiel-Coronada (Cu-Zn-Pb), and La Magdalena (Cu-Zn-Pb) in Spain. The Iberian Pyrite Belt massive sulfide ores are usually hosted in the lower sections of the volcano-sedimentary complex (late Famennian to late Visean), but they also occur in the uppermost levels of the phyllite-quartzite group at the Neves Corvo deposit, stratigraphically below the volcano-sedimentary complex. A Pb-Nd-Sr isotope dataset was obtained for 98 Iberian Pyrite Belt metapelite samples (from Givetian to upper Visean), representing several phyllite-quartzite group and volcano-sedimentary complex sections that include the footwall and hanging-wall domains of ore horizons at the Neves Corvo, Aljustrel, and Lousal mines. The combination of whole-rock Nd and Sr isotopes with Th/Sc ratios shows that the siliciclastic components of Iberian Pyrite Belt metapelites are derived from older quartz-feldspathic basement rocks (–11 ≤ εNdinitial(i) ≤ –8 and (87Sr/86Sr)i up to 0.727). The younger volcano-sedimentary complex metapelites (upper Tournaisian) often comprise volcanic-derived constituents with a juvenile isotopic signature, shifting the εNdi up to +0.2. The Pb isotope data confirm that the phyllite-quartzite group and volcano-sedimentary complex successions are crustal reservoirs for metals found in the deposits. In Neves Corvo, where there is more significant Sn- and Cu-rich mineralization, the higher (206Pb/204Pb)i and (207Pb/204Pb)i values displayed by phyllite-quartzite group and lower volcano-sedimentary complex metapelites (up to 15.66 and 18.33, respectively) suggest additional contributions to the metal budget from a deeper and more radiogenic source. The proximity to Iberian Pyrite Belt massive sulfide ore systems hosted in metapelite successions is observed when (207Pb/204Pb)i >15.60 and Fe2O3/TiO2 or (Cu+Zn+Pb)/Sc >10. These are important criteria that should be considered in geochemical exploration surveys designed for the Iberian Pyrite Belt.


2019 ◽  
Vol 61 (1) ◽  
pp. 18-38
Author(s):  
L. B. Damdinova ◽  
B. B. Damdinov ◽  
M. O. Rampilov ◽  
S. V. Kanakin

This study examines the compositions of the ore and the ore formation solutions, conditions of formation, and sources of Be mineralization using the Aunikskoye F-Be deposit, which is an integral part of the Western Transbaikal beryllium-bearing provinces, as a representative example. Further, the main factors responsible for the formation of beryllium mineralization were evaluated. The ore deposits are presented by the feldsparic–fluorspar–phenacite–bertrandite metasomatites formed in the carboniferous limestones during their metasomatic alternation with hydrothermal solutions by introducing F, Be, and other associated elements. The formation of early phenacite–fluorspar association occurred in high-fluorite СО2-containing solutions of elevated alkalinity with a salinity of ~10.5%–12% wt eq. NaCl in a temperature range of ~ 370–260 °С at pressures ranging from 1873 to 1248 bar. More recent fluorite and bertrandite deposits were formed by solutions with a salinity of 6.4%–7.7% wt eq. NaCl in a temperature range of ~156 °C–110 °C and a pressure range of 639–427 bar. The examination of the isotopic signature of the ore association minerals confirmed the apocarbonate nature of the main ore deposit and allowed the determination of the magmatogene nature of the ore-forming paleothermal springs, which are the source of subalkaline leucogranites. The primary factors that influenced the formation of the F-Be ore included the reduction of the F activity in solutions because of the binding of Ca and F in fluorite as well as because of the decrease in temperature during the ore deposition process. The elevated alkalinity of the ore-formation solutions resulted in the low solubility of the Be complexes, which caused a relatively low Be content in the ore and a relatively small amount of mineralization in the deposit.


2020 ◽  
Author(s):  
Ali Erdem Bakkalbasi ◽  
Hatice Nur Bayram ◽  
Mustafa Kumral ◽  
Ali Tugcan Unluer

<p><strong>Geochemical significance and Formation of  Suçatı Pb-Zn Deposits – Eastern Taurides</strong></p><p>Hatice Nur Bayram<sup>(1)*</sup>, Ali Erdem Bakkalbaşı <sup>(1)*</sup>, Mustafa Kumral<sup>(1)</sup>, Ali Tuğcan Ünlüer<sup>(1)</sup></p><p><sup>(1)</sup>Istanbul Technical University, Department of Geological Engineering, Istanbul/Turkey</p><p>(*E-mail: [email protected])</p><p> </p><p>The Middle Tauride Orogenic Belt is a productive enviroment in terms of Pb-Zn ore deposits, mostly associated with Permian aged dolomitized, shallow marine platform type carbonate rocks. There have been many studies on the origin of the ore deposits in the region, there are two important approaches that stand out for the formation of the ore deposits: the first theory is hydrothermal deposits with magmatic origin, and the other theory is Missisippi Valley-type (MVT) deposits related with the carbonate rocks commonly found in the region. Field studies at the Suçatı (Kayseri – Yahyalı, Central Anatolia, Turkey, East of Aladağlar extension of the Taurides) ore district in the Aladağ geologic unit indicate that the deposits in the region are associated with Paleo-Tethys limestones, fossiliferous limestones and dolomitic limestones. Mineralization is related to Lower Permian aged carbonate rocks include primary mineralization ore minerals as galena, sphalerite, smithsonite and goethite and as a product of hydrothermal activity, calcite mineral filled within fractures and cracks represents gangue minerals. As a result of geochemical analysis of the samples collected from the ore zones, PbO values range between 25.93% - 0.012%, ZnO values range between 51.01% - 0.042%, Fe<sub>2</sub>O<sub>3</sub> values range between 42.81% - 10.21%. In conclusion hydrothermal activities closely related with compressional and extentional tectonic regimes took place in multiphase mineralization.</p><p> </p><p><strong>Keywords:</strong> Pb-Zn Deposits, MVT, Taurides, Yahyalı</p>


1981 ◽  
Vol 18 (4) ◽  
pp. 708-723 ◽  
Author(s):  
R. I. Thorpe ◽  
Jayanta Guha ◽  
Jules Cimon

Twenty-three lead isotope analyses are reported for massive sulfide deposits, the main copper–gold shear zone deposits in anorthosite of the Doré Lake complex, and two gold deposits, all in Archean terrane, in the Chibougamau district. Five analyses were also obtained for lead occurrences in Proterozoic carbonate sediments in the Mistassini Basin.Galenas from the Coniagas and Lemoine deposits of volcanogenic massive sulfide type, from the Taché Lake deposit of possibly the same type, from the Norbeau and Ayrhart gold properties, and one from within the Opemiska mine, have Archean compositions. Of these, the Lemoine, Norbeau, and Opemiska mine galenas are slightly younger than the others or were contaminated during later deformation and (or) metamorphism.Analyses for the main Cu–Au deposits generally form a cluster, although the spread in 206Pb/204Pb ratios is significant and three analyses for the Copper Rand deposit, in particular, are distinct from data for the other deposits. One interpretation is that the data, in combination with the Archean analyses, define a secondary isochron reflecting a primary age of Archean deposits and rocks at 2735–2800 Ma and a secondary event, including genesis of the Cu–Au ores, at 2240–2160 Ma. Additional evidence for a metamorphic–plutonic(?) event at about 2200 Ma has been provided by previous paleomagnetic studies. One galena from the Opemiska deposit appears to have had uranogenic lead added at 1735–2075 Ma. Three analyses of galena from the Campbell (Merrill) pit are anomalous or indicate they were formed at 162–300 Ma, and it is suggested they may have resulted from multiple episodic additions of ambient rock lead to galena originally deposited at about 2200 Ma.Two new analyses, together with four older values, for Mistassini Basin lead occurrences define a possible secondary isochron that may indicate an integrated source age of 2655 or 2940 Ma at mineralization ages of 2100 and 1700 Ma, respectively. This secondary isochron is very poorly defined because three other new analyses plot above the line.This study suggests that further geochronological investigation of the Cu–Au orebodies, and of felsic dykes that occur in many cases in close spatial association with them, should be undertaken.


2020 ◽  
Vol 28 (2) ◽  
pp. 307-321
Author(s):  
Theofilos Toulkeridis ◽  
Nicole Liewig

Illite-rich size-fractions (<0.2, <0.4, 0.4-1, 0.4-2 and <2 µm) of Cambrian, Permian, Triassic and Jurassic calcschists, shales and dolostones from Pb-Zn ore-district of the southeastern French Massif Central were dated by the K-Ar method, and some by the Pb-Pb method after removal of the Pb external to the illite particles. The combined mineralogical and isotopic determinations show that illitization occurred successively at 285 ± 5, 240 ± 20, 185 ± 15, 140 ± 10 and 105 ± 5 Ma in the district. These tectonic-thermal pulses, which were also reported at a larger regional scale, did not systematically release Pb-mineralizing fluids. The mineralizing episodes seem to have only contributed to contemporaneous illitization and Pb precipitation at 191 ± 41 Ma, by Pb-Pb dating of illite, and at 105 ± 5 Ma in a reactivated fault containing illite mixed with Pb precipitates. The scatter of the Pb-Pb data suggests an incompletely equilibrated Pb isotopic signature when incorporated into the illite structure during crystallization. Pb-isotopic determinations of barren illite-type minerals provide new information about the circulation timing of the mineralizing hydrothermal fluids. The fluid migrations related to recurrent hydrothermal activities occurred within a segment of a continental margin that was located away from main rift zones and far (more than 500 km) from major orogenic zones of Western Europe. The lack of major geodynamic activities near metal deposits needs to hypothesize periodic migrations of hot -fluids in the underneath continental crust. Metals were concentrated at specific places, but not necessarily during each tectonic-thermal pulse recorded by illite. These tectonic-thermal activities confirm local geodynamic re-activations of previously occurring events with effects on local mass and heat transfers in the plutonic basements, as well as in the sedimentary sequences.


1989 ◽  
Vol 26 (5) ◽  
pp. 894-907 ◽  
Author(s):  
Anne Andrew ◽  
Colin I. Godwin

Whole-rock and galena lead-isotope analyses have been obtained from the Sicker Group Paleozoic island-arc volcanic package and from a Jurassic island-arc represented by the Bonanza Group volcanics and Island Intrusions. Galena lead-isotope analyses from the volcanogenic ore deposits at the Buttle Lake mining camp in the Sicker Group provide estimates of the initial lead ratios for the Sicker Group. Lead-isotope signatures are uniform within each of the major orebodies, but the Myra orebody is less radiogenic than the older H–W orebody. This has major significance in terms of ore genesis for these important deposits.There are significant differences in isotopic composition between the Sicker Group and Devonian island-arc type rocks in the Shasta district, California, which rules out direct correlations between the rock units of these two areas. Relatively high initial values of 207Pb/204Pb (> 15.56) and 208Pb/204Pb (> 38.00) suggest that large quantities of crustal lead must have been involved in the formation of the Sicker Group volcanic rocks. Thus it is proposed that the trench related to the Paleozoic island arc had a substantial input of continental detritus and may have lain near a continent.The Jurassic island arc is characterized by low 207Pb/204Pb ratios (< 15.59), suggesting a more primitive arc environment than for the Paleozoic arc. Bonanza Group volcanic rocks contain lead that is less radiogenic than lead in the Island Intrusions. Present and initial lead-isotope ratios of both the Bonanza Group volcanics and Island intrusions follow the same trend, supporting the hypothesis that they are comagmatic. Lead isotopes from a galena vein within the Island Copper porphyry deposit plot with the initial ratios for Bonanza Group volcanics and Island Intrusions. This confirms the hypothesis that this mineralization is related to the Jurassic island-arc volcanic event.Initial lead-isotope ratios for the Jurassic rock suite form a linear array on both 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb plots. If interpreted as due to isotopic mixing, the more radiogenic end member has a composition that is lower in 207Pb/204Pb and higher in 206Pb/204Pb than typical upper continental crust. Assimilation of Sicker Group material during the emplacement of the Jurassic arc can explain the mixing trend.


2001 ◽  
Vol 52 (1) ◽  
pp. 25 ◽  
Author(s):  
Allison F. Britt ◽  
Raymond E. Smith ◽  
David J. Gray

Much of the Australian regolith ranges from Palaeogene to Late Cretaceous in age or even older, contrasting with the relatively young landscapes of the Northern Hemisphere. Hence, many imported geochemical exploration methods are unsuitable for Australian environments; this has led to successful homegrown innovation. Exploration geochemistry seeks to track geochemical anomalies arising from concealed ore deposits to their source. Much is known about element associations for different types of ore deposits and about observed patterns of dispersion. Element mobility in a range of Western Australian environments is discussed, drawing on field examples from the Mt Percy and Boddington gold mines and the Yandal greenstone belt, with reference to the effect of modern and past weathering regimes and the influence of groundwater on element mobility. Soil biota and vegetation affect Au mobility in the regolith, but specific processes, scale and environmental factors are unknown. Possible future synergies between biogeochemical or environmental research and regolith exploration geochemistry include determining the fundamental biogeochemical processes involved in the formation of geochemical anomalies as well as environmental concerns such as regolith aspects of land degradation. Exploration geochemists must study the work of biogeochemical and environmental researchers, and vice versa. There should also be collaborative research with regolith scientists and industry.


Sign in / Sign up

Export Citation Format

Share Document