scholarly journals The modelling of reverse defrosting cycles of air-to-water heat pumps with TRNSYS

2019 ◽  
Vol 111 ◽  
pp. 01063 ◽  
Author(s):  
Matteo Dongellini ◽  
Agostino Piazzi ◽  
Filippo De Biagi ◽  
Gian Luca Morini

The most widespread defrosting technique adopted by Air-Source Heat Pumps (ASHPs) during the heating season is Reverse Cycle Defrosting (RCD). In this paper a dynamic model of RCD, based on performance data provided by the heat pump manufacturer, designed for TRNSYS and with a core-structure suitable for commercial units, is presented. A defrost cycle is divided in three phases. First, the unit heating capacity is reduced as a linear function of the ice layer thickness (Pre-Defrost phase). Subsequently, the reverse cycle operating mode is modelled on the basis of the performance data given by the manufacturer (Defrost phase) and, finally, the heat pump performances are altered taking into account the higher surface temperature of the external coil after the reverse mode (Post-Defrost phase). Then, the influence of defrosting energy losses on the heat pump seasonal performance factor in sites characterized by different climatic conditions has been assessed. Results point out that the ASHP seasonal efficiency decreases of about 5% taking into account defrost energy losses; in addition, the influence of defrost cycles on the internal air temperature is studied by assessing under which conditions the indoor thermal comfort can be guaranteed even in presence of frequent defrost cycles.

2019 ◽  
Vol 116 ◽  
pp. 00039 ◽  
Author(s):  
Piotr Kowalski ◽  
Paweł Szałański

The article discusses the problem of determining for air heat pumps the seasonal efficiency of energy production necessary to determine the energy performance of a building. On the example of selected Polish cities (Suwalki, Bialystok, Warsaw, Wroclaw, Zielona Gora, Resko, Szczecinek, Koszalin) the influence of climatic conditions on the SCOP of an exemplary air-to-air heat pump and on the result of building energy performance calculations was analysed. SCOPs for each location were determined according to the method of EN 14825. The difference between SCOP for average (A) and colder (C) climates according to EN 14825 was 35.6%. It has been shown that the climate of Polish cities may be similar to both the average climate (A) and the colder climate (C), or they significantly differ from both climates. The most significant difference in SCOP between the analysed cities was obtained for Suwalki and Szczecinek. It was 31.9% and 31.4% for the assumed heating season length as for climate (A) and (C) respectively. For the exemplary building in Suwalki, taking SCOP for the average climate (A) and not based on climatic data of Suwalki gives an error of 39.3% in the calculation of primary energy for heating. For the same locations, the differences in SCOP and EP resulting from the assumption of the heating season length as for the average climate (A) or as for the colder climate (C) were respectively from 2.4% to 3.3% and from -3.4% to -2.2%. In diversified Polish climate, assuming the same SCOP values of air heat pumps regardless of location does not allow for their full comparison with devices whose efficiency does not depend on climatic conditions. The authors suggest that when calculating the energy performance of the building, the SCOP should be always determined on the basis of the local climate and the length of the heating season.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2496 ◽  
Author(s):  
Laura Carnieletto ◽  
Borja Badenes ◽  
Marco Belliardi ◽  
Adriana Bernardi ◽  
Samantha Graci ◽  
...  

The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two different tools are developed in the H2020 research project named, “Cheap GSHPs”: A design tool and a decision support system. In both cases, the energy demand of the buildings may not be calculated by the user. The main input data, to evaluate the size of the borehole heat exchangers, is the building energy demand. This paper presents a methodology to correlate energy demand, building typologies, and climatic conditions for different types of residential buildings. Rather than envelope properties, three insulation levels have been considered in different climatic conditions to set up a database of energy profiles. Analyzing European climatic test reference years, 23 locations have been considered. For each location, the overall energy and the mean hourly monthly energy profiles for heating and cooling have been calculated. Pre-calculated profiles are needed to size generation systems and, in particular, ground source heat pumps. For this reason, correlations based on the degree days for heating and cooling demand have been found in order to generalize the results for different buildings. These correlations depend on the Köppen–Geiger climate scale.


2019 ◽  
Vol 116 ◽  
pp. 00023
Author(s):  
Andrzej Gajewski

To limit greenhouse gases emissions caused by energy production European Union (EU) prompts heat pump as heat generator which should decrease CO2 emissions to the atmosphere. Because of the climatic conditions and low efficiency of electrical energy production and transfer in Poland it could be possible a condensing gas boiler would emit less CO2. The analysis includes ten-year temperature measurements in Białystok where is more severe climate in Poland. Due to relatively high seasonal coefficient of performance (SCOP) value heat pumps can emit less CO2 than condensing gas boiler and can be applied as ecological heat generators.


2021 ◽  
Vol 13 (0) ◽  
pp. 1-6
Author(s):  
Gabrielė Daugirdaitė ◽  
Giedrė Streckienė ◽  
Tomas Kropas

In order to achieve ambitious goals for energy efficiency and requirements for near zero energy buildings, various technological solutions enabling the use of renewable energy are proposed and applied. One such rapidly spreading technology is heat pumps. However, the use of air-­to-­water heat pumps in countries where the cold season is cold and humid has unfavourable conditions for the operation of this equipment during the heating season. As a result, the performance efficiency of the equipment decreases. This article presents the simulation results of an air-­to-­water heat pump operation in Lithuania using the TRNSYS modelling tool; its nominal heating capacity is 6.55 kW. The model was calibrated using real data obtained at Vilnius Gediminas Technical University when measurements were performed under heat pump freezing conditions. The seasonal performance factor of the heat pump heating mode was determined during the calculation. Parametric analysis of the model was also performed, when sensitivity of the model to the initial climatic data was observed. Comparable results are obtained for Vilnius, Prague and London.


2021 ◽  
Vol 289 ◽  
pp. 02006
Author(s):  
Elizaveta Tyabut ◽  
Ivan Sokolov ◽  
Artem Ryzhenkov

Geothermal energy is a renewable energy resource. Nowadays it can be considered as a promising alternative to various fossil fuels. Ground source heat pumps are efficient installations enabling the intensive use of underground energy for heating and cooling of modern residential and commercial buildings. However, climatic conditions often limit the use of this type of installation to a certain extent. This paper presents a description of an existing system comprising a liquid-toliquid heat pump and a geothermal field consisting of 4 boreholes. The system is used to investigate the intensity of ground temperature potential decrease in winter and its recovery in summer in the Moscow city environment with a detailed study of the properties of individual soil layers, as well as to study the mutual influence of boreholes on each other, represented by the conditional radius of thermal influence of individual boreholes. Graphs of soil temperature changes at different depths are presented.


2019 ◽  
Vol 12 (1) ◽  
pp. 45-49
Author(s):  
A. V. Martynov ◽  
N. E. Kutko

Expediency is considered of substitution of water heating and transition to air heating that can be implemented with “air-air” type heat pumps (HP). The absence of water pipelines raises the reliability of heating systems. In addition to improved reliability, heat pumping systems ensure comfortable conditions for consumers at intervals between the heating seasons, when the central water heating is disabled.The “air-air” type HP use the ambient air as a low-grade heat source (LGHS). At low air temperatures, transformation ratio μ is about 2 and would rise to 3÷4 at higher air temperatures, which ensures high cost-efficiency of heating systems based on heat pumps. The heating season can generally be divided into two periods. One of the periods is characterized by the highest ambient air temperatures (–5÷8°С). This period is rather long and, in warmer winters, can last for about 4000 hours per heating season, or longer. This is the period, when the heat pump operates efficiently at a transformation ratio above 4.The other period, when the ambient temperature falls below –10÷ –20°С, generally lasts for a small number of hours, which makes about 15÷18% of the total duration of the heating season. At this period, the efficiency of the heat pump would decrease to μ =1.9÷2. Yet, even with such an efficiency, a heat pump delivers twice as much heat as the electric power it consumes.Therefore, in regions with a long period of temperatures within the range of –5÷8°С during a heating season, air heating based on HP can be advantageous compared to water heating.


2021 ◽  
pp. 1-32
Author(s):  
Bismark Addo-Binney ◽  
Wahid Besada ◽  
Martin Agelin-Chaab

Abstract This paper performed analyses on a proposed direct wind-powered heat pump integrated with a pond which serves as an evaporator for space heating in cold regions. The analysis was conducted using environmental data for selected locations in Canada and the Engineering Equation Solver. Three different pairings of heat pumps and wind turbines were studied (a wind-powered heat pump with a pond as an evaporator, a wind-powered heat pump without a pond, and an electricity-powered heat pump). Energy and exergy analyses were performed on the systems. The novelty in the present study is in the use of a wind turbine to directly power the heat pump and using a pond as the evaporator. The results show that the proposed system has the highest coefficient of performance compared to the others. The average coefficient of performance for the selected locations is 2.7, which is at least 67% better than the others. Similarly, the overall exergy for the proposed system is 16.9%, which is at least 40% better than the others. The average heating capacity of the selected locations for the proposed system is 4.5 kW, which is from 29% to 300% better than the others. Additionally, the sustainability index for the proposed system is the highest for the proposed system. The results have shown that the proposed system has superior overall performance for space heating in cold regions.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2020 ◽  
Author(s):  
Jeffrey Spitler ◽  
Signhild Gehlin

When the new student center at Stockholm University in Sweden was completed in the fall of 2013 it was thoroughly instrumented. The 6300 m2 four-story building with offices, a restaurant, study lounges, and meeting rooms was designed to be energy efficient with a planned total energy use of 25 kWh/m2/year. Space heating and hot water are provided by a ground source heat pump (GSHP) system consisting of five 40 kW off-the-shelf water-to-water heat pumps connected to 20 boreholes in hard rock, drilled to a depth of 200 m. Space cooling is provided by direct cooling from the boreholes. This paper uses measured performance data from Studenthuset to calculate the actual thermal performance of the GSHP system during one of its early years of operation. Monthly system coefficients-of-performance and coefficients-of-performance for both heating and cooling operation are presented. In the first months of operation, several problems were corrected, leading to improved performance. This paper provides long-term measured system performance data from a recently installed GSHP system, shows how the various system components affect the performance, presents an uncertainty analysis, and describes how some unanticipated consequences of the design may be ameliorated. Seasonal performance factors (SPF) are evaluated based on the SEPEMO (“SEasonal PErformance factor and MOnitoring for heat pump systems”) boundary schema. For heating (“H”), SPFs of 3.7 ± 0.2 and 2.7 ± 0.13 were obtained for boundaries H2 and H3, respectively. For cooling (“C”), a C2 SPF of 27 ± 5 was obtained. Results are compared to measured performance data from 55 GSHP systems serving commercial buildings that are reported in the literature.


2019 ◽  
Vol 86 (3) ◽  
pp. 30902 ◽  
Author(s):  
Bin Liu ◽  
Lin Chai ◽  
Aiqiang Chen ◽  
Fuhui Tang ◽  
Khellil Sefiane ◽  
...  

Heat pumps are widely investigated for their versatile use in a wide range of applications. In this study, three types of heat pumps were experimentally compared. These heat pumps include an one-stage without injection vapor heat pump, an one-stage injection vapor heat hump and a two-stage injection vapor heat pump with an economizer. The results showed that the heating capacity of all three variants of heat pumps decreases with the decrease of the evaporation temperature. However, the attenuation ratio of the heating capacity is found to be different from one pump to another. On the one hand, the largest attenuation rate is found to be 68.84% for evaporating temperatures ranging from −1 °C to −23 °C and for the case of one-stage heat pump. On the other hand, the smallest attenuation rate is found to be 31% for the two-stage injection vapor heat pump in the same temperature range. It is worth noting that the heating efficiency is improved by the amount of vapor injection, nevertheless, there is a maximum value due to the limitations of the economizer. The two-stage injection vapor heat pump can exhibit an enhanced heating efficiency of 127% compared to the one-stage without injection vapor heat pump and 13% compared to the one-stage injection vapor heat pump for an evaporating temperature of −23 °C.


Sign in / Sign up

Export Citation Format

Share Document