scholarly journals Numerical investigation of the energy flexibility of different heating and cooling systems

2019 ◽  
Vol 111 ◽  
pp. 06001 ◽  
Author(s):  
Evangelia Loukou ◽  
Mingzhe Liu ◽  
Hicham Johra ◽  
Per Heiselberg ◽  
Bianca A. Dia ◽  
...  

The significant expansion of intermittent renewable energy sources can compromise the stability of energy grids due to the mismatch between instantaneous energy use and production. Buildings have a large potential for energy storage and demand-side management, which can offer energy flexibility to a Smart Grid system. Smart control of heating, ventilation and air conditioning systems is a great solution for improving flexible energy use, load shifting and power peak shaving. This numerical study compares the energy flexibility potential of three different heating and cooling systems implemented in a nearly zero-energy office building. The energy flexibility strategy consists in the modulation of heating / cooling indoor temperature set points according to an energy price signal. The energy flexibility assessment was performed based on the energy shifting ability, indoor thermal comfort level and economic benefits. This article establishes a better understanding of the flexibility potential of common and innovative heating / cooling technologies. Lindab Solus system has the highest load shifting ability with a flexibility index of 67.41%, followed by the radiator heating system, scoring a 59.92%, and the underfloor heating system with 56.65%. It is clear that the selection between different heating/ cooling systems can have a great impact on the energy flexibility of the grid system.

Author(s):  
Teodora Melania Şoimoşan ◽  
Raluca Andreea Felseghi ◽  
Maria Simona Răboacă ◽  
Constantin Filote

Within the current context of energy, there are several ways to meet the challenges of durable development. Efficiency in energy use, considered to be the fifth energy source, as well as the use of sustainable energy sources represent critical objectives. Nowadays, almost 50% of the total energy consumption in Europe is consumed by building heating and cooling. The current heat demand is mainly covered by conventional energy—fossil fuels. Consequently, there is a significant growth potential for the use of renewable energy sources (RES) in order to produce heat. One can expect in the near future that the energy systems would include a larger percentage of renewable sources, so the increase of the RES share is one of the main objectives of the thermoenergetic field. This chapter approaches heating system typology, the performance indicators used to asses the hybrid heating systems, and at the same time synthetising the assumptions of ensuring the optimum operating conditions.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 761 ◽  
Author(s):  
Jagoda Błotny ◽  
Magdalena Nemś

Changes in climate, which in recent years have become more and more visible all over the world, have forced scientists to think about technologies that use renewable energy sources. This paper proposes a passive solar heating and cooling system, which is a Trombe wall located on the southern facade of a room measuring 4.2 m × 5.2 m × 2.6 m in Wrocław, Poland. The studies were carried out by conducting a series of numerical simulations in the Ansys Fluent 16.0 environment in order to examine the temperature distribution and air circulation in the room for two representative days during the heating and cooling period, i.e., 16 January and 15 August (for a Typical Meteorological Year). A temperature increase of 1.11 °C and a temperature decrease in the morning and afternoon hours of 2.27 °C was obtained. Two options for optimizing the passive heating system were also considered. The first involved the use of triple glazing filled with argon in order to reduce heat losses to the environment, and for this solution, a temperature level that was higher by 8.50 °C next to the storage layer and an increase in the average room temperature by 1.52 °C were achieved. In turn, the second solution involved changing the wall material from concrete to brick, which resulted in a temperature increase of 0.40 °C next to the storage layer.


Időjárás ◽  
2021 ◽  
Vol 125 (3) ◽  
pp. 431-448
Author(s):  
Csenge Dian ◽  
Attila Talamon ◽  
Rita Pongrácz ◽  
Judit Bartholy

The built environment has a very complex role in cities. On the one hand, various urban climatological phenomena are caused and influenced by buildings (e.g., urban heat island effect, local wind conditions, air pollution). On the other hand, buildings are important contributors to energy use via heating and cooling, e.g. they account for about 40% of total energy consumption on average in Europe. Daily average outdoor temperature is taken into account to design the heating and cooling systems of residential, commercial, or office buildings. That is why we analyzed the available temperature time series of the capital of Hungary, Budapest for the period between 1901 and 2019. The aims of this study are (i) to investigate the changes in temperature data series that influence building energy design parameters, (ii) to analyze the heating and cooling periods in the last 119 years based on different definitions, and (iii) to define a third (transitional) period between the heating and cooling periods. Based on the results, it can be concluded that the variability of warm days is smaller than that of cold days, consequently, the optimal design of heating systems is a greater challenge compared to cooling systems. Furthermore, the length of the temperature-based heating period decreased substantially, while the length of the cooling period increased as a consequence of overall regional warming.


2016 ◽  
Vol 4 (1) ◽  
pp. 12-24
Author(s):  
Balint Horvath ◽  
Maria Borocz ◽  
Sandor Zsarnoczai ◽  
Csaba Fogarassy

Abstract Natural gas is still the primary input of the Hungarian heating and cooling systems, therefore it still makes most of the overheads. One of the main obstacles of a competitive district heating system is the public opinion which still considers this service more expensive than the traditional heating forms. According to the absolute numbers this assumption might be valid but from a more accurate economic perspective, heat production has more aspects to stress. Most people forget about the simple fact that the maintenance costs of natural gas based systems are rather outsourced to the consumer than in the case of district heating. Furthermore, the uneven rate of the fixed and variable costs of this technology does not prove to be optimal for service developments. Investigating the future tendencies highlight that encouraging the efficiency improvement of district heating and the spread of technological innovation in the sector does not belong to the top priorities. Still, avoiding this problem it could lead serious deadweight losses in the case of the heating sector.


2021 ◽  
Vol 893 ◽  
pp. 57-63
Author(s):  
João Ferraz ◽  
Sónia Silva ◽  
Helena Fernandes ◽  
Sarah Bogas ◽  
Bruno Vale ◽  
...  

This work aims to develop safety shoes, with thermal regulation systems, namely innovative heating and cooling systems. Heating system was developed using printing techniques; and cooling system was developed using the integration of Peltier modules in the shoe structure. These materials are based on the Peltier effect, in which, when an electric current is applied, the heat moves from one face to the other, being subsequently removed using thermal dissipation methods. This effect allows an active cooling. Given the high technological challenge of integrating cooling systems into footwear, this paper will present only developments related to cooling system.


2014 ◽  
Vol 11 ◽  
pp. 58-63 ◽  
Author(s):  
Andrea R. Proto ◽  
Giuseppe Zimbalatti ◽  
Lorenzo Abenavoli ◽  
Bruno Bernardi ◽  
Soraya Benalia

The biomass for energy purposes, coming from agroforestry systems and timber industry, can provide various environmental and socio-economic benefits. Among all renewable energy sources, agroforestry biomass represents both an important alternative source to fossil fuels and an opportunity for the socio-economic development of various marginal areas in Italy. In particular, agroforestry is a collective name of land use systems in which woody perennials are grown in association with herbaceous plants and/or livestock in a spatial arrangements, a rotation, or both in which there are both ecological and economic interactions between the tree and the non-tree components of the system. Estimating availability of biomass resources is important to assess bioenergy production potential and so bioenergy contribution to annual energy demand. In the supply of biomass to energy use, the planning of operations is the basis for sustainable development of agroforest system. Most existing forest practice rules and recommendations did not anticipate this increased extraction of woody biomass and offer no specific guidance on how much removal is healthy for ecosystems. Intensification of biomass utilization, particularly for energy and fuel needs, presents a range of potential environmental risks. Therefore, the research focuses on development of guidelines for increasing a sustainable biomass supply chain at local scale, in order to facilitate energy planning that considers the local system carrying capacity and the potential of substitution of fossil fuels.


Author(s):  
Oğuzhan Çalişir ◽  
Müjdat Öztürk ◽  
Gamze Genç

Main principle of the thermally active building system (TABS) which is a type of radiant heating system operating at low temperatures range as 30–50 ˚C is to bring the ambient temperature to the desired level by heating the building mass. TABS system is also a system that can heat at low temperatures such as underfloor heating systems, and both systems can be applied in multi-story buildings. Because these systems operate at low temperatures, they are compatible with both each other and with renewable energy sources. At the same time, heating and cooling at temperatures close to room temperature can also increase the coefficient of performance (COP) in these systems. In this study, a double-layered system which is a new concept was designed by using both underfloor heating and TABS on the same floor; and the thermal performance of the double-layered TABS system (DLTS) was examined using the FLUENT/ANSYS programs. In the calculations, different supply water temperatures (30, 35 and 40 °C) and the pipe positions on the vertical axis (0.001 m, 0.050 m, and 0.100 m) were considered. It can be obtained from the results that the efficiency of the heating systems can be increased by using the new DLTS proposed in this study.


Energies ◽  
2013 ◽  
Vol 6 (10) ◽  
pp. 5114-5129 ◽  
Author(s):  
Elisa Moretti ◽  
Emanuele Bonamente ◽  
Cinzia Buratti ◽  
Franco Cotana

2019 ◽  
Vol 111 ◽  
pp. 01026
Author(s):  
Evdoxia Paroutoglou ◽  
Alireza Afshari ◽  
Niels Chr. Bergsøe ◽  
Peter Fojan ◽  
Göran Hultmark

Cooling of air in buildings has a significant effect on thermal comfort and, consequently, productivity of office occupants. This study presents a state of the art review of energy efficient cooling systems that will provide occupants in buildings with satisfying thermal comfort. Using high-temperature cooling systems combined with renewable energy sources increases the energy efficiency in buildings. Latent heat thermal energy storage (LHTES) using Phase Change Materials (PCM) is a renewable energy source implemented in space cooling applications due to its high energy storage density. Since the share of commercial buildings in need of cooling is increasing, there is a need for developing new technical solutions in order to reduce the energy use without compromising thermal comfort. To this end, a proposed ventilation system, preliminarily analyzed in this paper, is expected to reduce further the energy use. The ventilation system is composed of an air handling unit, a 2-pipe active chilled beam system, and a cooling system including a LHTES using PCM. Few researchers have investigated chilled water air-conditioning systems that integrate a LHTES using PCM. In this review, function characteristics, possibilities and limitations of existing systems are discussed.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2941 ◽  
Author(s):  
Rachana Vidhi

Energy consumption for heating and cooling constitute the majority of the energy use for building loads. Using passive cooling systems to reduce the energy consumption or to make the process more efficient can be very beneficial. Ground coupled heat exchangers and night sky radiative cooling systems have been used for centuries to achieve cooling and ice making. Ground coupled heat exchangers use the temperature difference between underground soil and ambient air or water for heat transfer between the soil and the fluid passing through buried pipes. Night sky radiative cooling takes advantage of the night sky as the coldest heat sink available for heat transfer with any surface. Use of these simple designs with the modern cooling/heating systems has the potential for a major impact on the heating and cooling needs. This review paper describes the various designs, configurations and applications of these systems as well as determining the parameters that impact their performance.


Sign in / Sign up

Export Citation Format

Share Document