Active Thermal Regulation Systems for Footwear: Development of New Innovative Technologies

2021 ◽  
Vol 893 ◽  
pp. 57-63
Author(s):  
João Ferraz ◽  
Sónia Silva ◽  
Helena Fernandes ◽  
Sarah Bogas ◽  
Bruno Vale ◽  
...  

This work aims to develop safety shoes, with thermal regulation systems, namely innovative heating and cooling systems. Heating system was developed using printing techniques; and cooling system was developed using the integration of Peltier modules in the shoe structure. These materials are based on the Peltier effect, in which, when an electric current is applied, the heat moves from one face to the other, being subsequently removed using thermal dissipation methods. This effect allows an active cooling. Given the high technological challenge of integrating cooling systems into footwear, this paper will present only developments related to cooling system.

2012 ◽  
Vol 5 (2) ◽  
pp. 32-39 ◽  
Author(s):  
Lu Aye ◽  
Robert Fuller

Melbourne's climatic conditions demand that its buildings require both heating and cooling systems. In a multi-storey office building , however, cooling requirements will dominate. How the internal space is cooled and ventilation air is delivered will significantly impact on occupant comfort. This paper discusses the heating and cooling systems proposed for the CH2building. The paper critiques the proposed systems against previous experience, both internationally and in Australia. While the heating system employs proven technologies, less established techniques are proposed for the cooling system. Air movement in the shower towers, for example, is to be naturally induced and this has not always been successful elsewhere. Phase change material for storage of "coolth" does not appear to have been demonstrated previously in a commercial building, so the effectiveness of the proposed system is uncertain. A conventional absorption chiller backs up the untried elements of the cooling system, so that ultimately occupant comfort should not be compromised .


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 761 ◽  
Author(s):  
Jagoda Błotny ◽  
Magdalena Nemś

Changes in climate, which in recent years have become more and more visible all over the world, have forced scientists to think about technologies that use renewable energy sources. This paper proposes a passive solar heating and cooling system, which is a Trombe wall located on the southern facade of a room measuring 4.2 m × 5.2 m × 2.6 m in Wrocław, Poland. The studies were carried out by conducting a series of numerical simulations in the Ansys Fluent 16.0 environment in order to examine the temperature distribution and air circulation in the room for two representative days during the heating and cooling period, i.e., 16 January and 15 August (for a Typical Meteorological Year). A temperature increase of 1.11 °C and a temperature decrease in the morning and afternoon hours of 2.27 °C was obtained. Two options for optimizing the passive heating system were also considered. The first involved the use of triple glazing filled with argon in order to reduce heat losses to the environment, and for this solution, a temperature level that was higher by 8.50 °C next to the storage layer and an increase in the average room temperature by 1.52 °C were achieved. In turn, the second solution involved changing the wall material from concrete to brick, which resulted in a temperature increase of 0.40 °C next to the storage layer.


Author(s):  
Amanie Abdelmessih ◽  
Andre Alvarez ◽  
Joshua Gonzalez ◽  
Timothy Gooch ◽  
Adrian Gutierrez ◽  
...  

Abstract Common quibbles in most homes are the temperature setting. Some family members are comfortable with cooler temperature settings, while other family members prefer warmer temperature settings. Not to mention the fragile elderly and some medical situations require different temperature settings for those individuals than the rest of the occupants of the space. The purpose of this article is to outline a research where we created a working prototype of a portable, effective Peltier cooling/heating system. Peltier, or thermoelectric modules, are devices that use the differences in electric voltages to create a difference in temperature between two flat opposite sides of the thin module. The system can easily be switched between the heating and cooling modes. In contrast to compression refrigeration systems it produces a very low level of noise output. Also, the system is portable, small in size, and light weight. Another advantage of using the Peltier system is it does not employ hazardous substances such as hydrochlorofluorocarbons, but uses water. While a system such as this could be beneficial in the day to day comfort of any individual, it could prove vital to the survival of the elderly and medically vulnerable individuals. This heating/cooling system can enhance the performance of military, particularly in biological warfare suites, and law enforcement personnel who find themselves in less than desirable weather conditions. This uniquely designed Peltier system is compact, and lightweight. Cooling/heating through the system would be achieved by the exchange of heat between the user and a custom designed vest. The system is powered by lithium ion battery pack. Details of this unique design are discussed in the article. Also, the testing and results are reported, and discussed.


2016 ◽  
Vol 4 (1) ◽  
pp. 12-24
Author(s):  
Balint Horvath ◽  
Maria Borocz ◽  
Sandor Zsarnoczai ◽  
Csaba Fogarassy

Abstract Natural gas is still the primary input of the Hungarian heating and cooling systems, therefore it still makes most of the overheads. One of the main obstacles of a competitive district heating system is the public opinion which still considers this service more expensive than the traditional heating forms. According to the absolute numbers this assumption might be valid but from a more accurate economic perspective, heat production has more aspects to stress. Most people forget about the simple fact that the maintenance costs of natural gas based systems are rather outsourced to the consumer than in the case of district heating. Furthermore, the uneven rate of the fixed and variable costs of this technology does not prove to be optimal for service developments. Investigating the future tendencies highlight that encouraging the efficiency improvement of district heating and the spread of technological innovation in the sector does not belong to the top priorities. Still, avoiding this problem it could lead serious deadweight losses in the case of the heating sector.


2019 ◽  
Vol 111 ◽  
pp. 06001 ◽  
Author(s):  
Evangelia Loukou ◽  
Mingzhe Liu ◽  
Hicham Johra ◽  
Per Heiselberg ◽  
Bianca A. Dia ◽  
...  

The significant expansion of intermittent renewable energy sources can compromise the stability of energy grids due to the mismatch between instantaneous energy use and production. Buildings have a large potential for energy storage and demand-side management, which can offer energy flexibility to a Smart Grid system. Smart control of heating, ventilation and air conditioning systems is a great solution for improving flexible energy use, load shifting and power peak shaving. This numerical study compares the energy flexibility potential of three different heating and cooling systems implemented in a nearly zero-energy office building. The energy flexibility strategy consists in the modulation of heating / cooling indoor temperature set points according to an energy price signal. The energy flexibility assessment was performed based on the energy shifting ability, indoor thermal comfort level and economic benefits. This article establishes a better understanding of the flexibility potential of common and innovative heating / cooling technologies. Lindab Solus system has the highest load shifting ability with a flexibility index of 67.41%, followed by the radiator heating system, scoring a 59.92%, and the underfloor heating system with 56.65%. It is clear that the selection between different heating/ cooling systems can have a great impact on the energy flexibility of the grid system.


Author(s):  
G. Bertrand ◽  
C. Malavolta ◽  
F. Tourenne ◽  
B. Hansz ◽  
C. Coddet ◽  
...  

Abstract In general, thermal spraying involves high temperatures that can be deleterious for the microstructure and deformation of the substrate. As a consequence, the use of a cooling system during spraying is often necessary. Meanwhile, in some cases, a too low surface temperature can induce a loss of properties, in particular concerning adherence and coating density. Therefore, it would be sometimes interesting to combine pre-heating and cooling stages with the plasma spray. A specific process, named HeatCool, was developed and patented to ensure a precise control of the temperature at the spraying location. The present work was focused on the study of the influence of pre-heating and cryogenic cooling conditions on the microstructure and mechanical characteristics of NiCrFeBSi self-fluxing alloy deposited by d.c. plasma spray technique. Firstly, a comparison between air and CO2 cooling was conducted to assess the efficiency corresponding to the specific use of cryogenic CO2. The main characteristics studied were the microhardness, roughness, porosity, mechanical deformations, morphology and crystallographic structures. Optimising the cooling methods and conditions combined with the process parameters improved microhardness of the plasma sprayed metal alloy and induced lower strain deformation of the substrate. Secondly, the pre-heating system was added to the device and the HeatCool process was evaluated. The process was demonstrated to be an efficient mean to enhance the structural and mechanical characteristics of coatings made of self-fluxing alloy.


1966 ◽  
Vol 181 (1) ◽  
pp. 105-114
Author(s):  
J. Gratzmuller ◽  
S. J. Davies

Water cooling in diesel engines is studied, with particular reference to the application of these engines in locomotives of high power. In this context, problems relating to weight, volume and radiator design become progressively more difficult to solve with the tendency towards increased unit powers. In the solution considered the water in the cooling system is put under a high static pressure, which makes it possible to raise the water temperatures above the usual levels. Resulting from this, the formation of steam bubbles is reduced or eliminated, ‘cavitation corrosion’ is reduced considerably, and cavitation in the water pump is prevented. Water consumption is markedly reduced. Standard equipment for locomotives is described. Cooling the supercharge air and the lubricating oil at relatively low temperatures is compatible with cooling the engine at a high temperature if two cooling circuits are used, with their radiators placed in series in the cooling air current. The case of cooling engines of high supercharge is examined; in these, the heat taken from the admission air and from the lubricating oil exceeds that taken from the engine. Future designs of heating and cooling systems for engines with very high supercharge are proposed.


Author(s):  
Yin Hang ◽  
Ming Qu

Solar absorption cooling has been an intriguing research subject since 1970. However, it is not widely applied because the first cost of the system is high, the commercial hot water absorption chiller is not mature, the site demonstration and evaluation are not adequate and the price of conventional fossil energy sources is relatively low. This paper investigates the commercialization potentials of solar absorption cooling and solar heating system by comparing the life cycle cost between it and the conventional electrical chiller cooling and gas-fired boiler heating system. A computational model has been programmed in the Engineering Equation Solver (EES) to analyze the economical performances of the two systems applied to a dedicated building. The model considers the cost of capital, installation, operation and maintenance, the discount rate, the fuel prices, and the inflation rates. The result of the model indicated that given the present fuel cost, the solar absorption cooling and heating system is not as economic as the conventional system especially when its size is small. However, according to the sensitivity analysis carried, the solar absorption cooling and heating system could compete with the conventional cooling and heating system when the electricity price and fuel inflation increase.


Author(s):  
K. C. Chan ◽  
C. Y. Tso ◽  
Christopher Y. H. Chao

In this study, simulation was conducted to investigate the effect of mass recovery, heat recovery, pre-heating and pre-cooling time on the system performance of a double-bed adsorption cooling system. Pressures of different system components were considered in the simulation. The adsorbent-adsorbate pair used was silica-gel and water. The heating and cooling temperatures were selected to be 85°C and 27°C respectively. Both the adsorption and desorption phase times were set at 15 minutes. The coefficient of performance (COP) and specific cooling power (SCP) were used to quantify the performance of the system. From the simulation, the basic cycle provided COP and SCP of 0.20 and 40.9W/kg respectively. By conducting heat recovery for 120 seconds, the system COP was largely increased by 99% to 0.40 compared to the basic cycle. The SCP was also increased to 42.3W/kg. Mass recovery, however, did not have too much effect on the system performance. The COP and SCP only increased by 4.5% and 3.9% respectively when conducting mass recovery for 4.7 seconds. For conducting heat and mass recovery, the COP and SCP were increased to 0.36 and 44.68W/kg, respectively. Pre-heating and pre-cooling can also be beneficial in improving both COP and SCP. The COP and SCP were increased by 14.5% and 10.1% respectively, to 0.23 and 45.0W/kg by conducting pre-heating and pre-cooling for 50.3 seconds. The combinations of these processes were also studied. It is suggested heat and mass recovery then pre-heating and pre-cooling should be conducted to improve COP and SCP. The improvements showed 31.2% for COP, increasing to 0.27, and 11.9% for SCP, increasing to 45.7W/kg.


Sign in / Sign up

Export Citation Format

Share Document