scholarly journals Improving local air quality in cities by reducing nitrogen dioxide pollution from road traffic

2019 ◽  
Vol 122 ◽  
pp. 05002
Author(s):  
Spiru Paraschiv

Trucks and buses play a major role in our lives, transporting goods and thousands of people to cities every day. But these vehicles, although in a much smaller number than the car generates a significant amount of air pollutants. The daily NO2 concentrations measured by a traffic monitoring station over a period of two years are used to identify the temporal variation of NO2 pollution as a result of measures to ban the circulation of trucks that do not meet the EURO 6 standard on Stresemannstrase Street in Hamburg. The data shows a decrease in NO2 concentration due to the measure taken so that in January 2017 the maximum daily NO2 concentration was 86 µg/m3 compared to 63 µg/m3 in 2019. There was also a difference between the daily minimum concentrations during the same period, being approximately 28 µg/m3 in 2017 and 10 µg/m3 in 2019. The daily NO2 observations show a significant decrease in concentration since May 2018 when the non-EURO 6 trucks were banned. The largest decrease in daily concentrations was recorded in March 2019 compared with levels in March 2018, with a lower concentration for 28 days. A different situation was observed in October 2018, when compared to October 2017, showed an increase in concentration for 23 days.

Noise Mapping ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Chiara Bartalucci ◽  
Francesco Borchi ◽  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
...  

Abstract The introduction of Low Emission Zones, urban areas subject to road traffic restrictions in order to ensure compliance with the air pollutants limit values set by the European Directive on ambient air quality (2008/50/EC), is a common and well-established action in the administrative government of cities. The impacts on air quality improvement are widely analysed, whereas the effects and benefits concerning the noise have not been addressed in a comprehensive manner. As a consequence, the definition, the criteria for the analysis and the management methods of a Noise Low Emission Zone are not clearly expressed and shared yet. The LIFE MONZA project (Methodologies fOr Noise low emission Zones introduction And management - LIFE15 ENV/IT/000586) addresses these issues. The first objective of the project, co-funded by the European Commission, is to introduce an easy-replicable method for the identification and the management of the Noise Low Emission Zone, an urban area subject to traffic restrictions, whose impacts and benefits regarding noise issues will be analyzed and tested in the pilot area of the city of Monza, located in Northern Italy. Background conditions, structure, objectives of the project and actions’ progress will be discussed in this article.


Earth's atmosphere is made of two gases Nitrogen and Oxygen. Five major air pollutants are Ground level Ozone, Airborne particles or aerosols, Carbon monoxide, Sulfur dioxide, Nitrogen dioxide. Air pollutants risky to human health are Ground level Ozone and Aerosols. They are the main ingredients of Smog . The ground level ozone is formed when sunlight reacts with certain chemical emissions like nitrogen dioxide, carbon monoxide or methane These chemicals are emitted from industrial waste, car exhaust, gasoline vapors etc. Air quality is measured with the Air Quality Index. An AQI under 50 is considered as good air quality however as the AQI number increases , it becomes a concern for human health . Researcher measured the PM level (PM 2.5 and PM 10), temperature, Humidity and other related parameters continuously on different woods in different times in a fixed size room and constrained environment to establish that Yagya is a reliable source to reduce environment pollution .


1986 ◽  
Vol 5 (6) ◽  
pp. 583-588 ◽  
Author(s):  
R. P. Sherwin ◽  
J. C. Shih ◽  
J. D. Lee ◽  
R. Ransom

Young adult male Swiss Webster mice were exposed to 0.45 ppm of nitrogen dioxide (NO2) for 7 hours per day for 4 weeks. The lungs and brains were assayed for serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content by high-performance liquid chromatography. Lung 5-HT content for the exposed animals was 13.1% less than that for the control group, but this difference was not statistically significant. Brain 5-HT and 5-HIAA were significantly elevated, +17.3% (P < 0.005) and +47.3% (P 0.001), respectively, and the ratios of 5-HIAA to 5-HT were also higher (P 0.005). The results suggest that further exploration of lung and brain serotonin alterations by air pollutants may offer useful discriminates for the evaluation of air quality.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 806
Author(s):  
Mariusz Rogulski ◽  
Artur Badyda

The coronavirus disease (COVID-19) has caused huge changes in people’s daily habits and had a significant impact on the economy. The lockdowns significantly reduced road traffic and meant that many people worked remotely. Therefore, the question arose as to how the reduced road traffic and stays of residents at home affected the degree of pollution and the structure of major air pollutants. To answer this question, the article presents an analysis of changes in typical air pollutants (PM10, PM2.5, NO2) in the five largest Polish cities and one of the voivodships. The data from the Polish State Environmental Monitoring were used for the analysis. The analysis showed that the period of the first lockdown in Poland (April 2020), despite the reduced road traffic, resulted in a significant increase in PM10 emissions (9–91% during working days and an average of 30% on Saturdays and Sundays), a slight increase in PM2.5 emissions (on average from 2% to 11% for all analyzed locations), and a reduction in NO2 emissions (on average from 6% to 11% for all analyzed locations) compared to the period before the lockdown. However, the changes were not homogeneous—in Łódź and Warsaw, in most cases, an increase in all analyzed pollutants was observed, and the greatest decrease in pollution took place in Małopolska voivodship (including Kraków). Comparing the data from April 2020 to the data from April 2019, the overall difference in the PMs concentrations was small, although there are places where there has been a significant decrease (Wrocław, Poznań), and there were also places where the concentration increased (Warsaw, Łódź, Małopolska). In the case of nitrogen dioxide, pollution concentration decreased in most locations. The only exception was the background stations in Warsaw, where the increase was 27%.


2020 ◽  
Vol 15 (3) ◽  
pp. 560-573
Author(s):  
Sugandh Kumar Choudhary

Air pollution is the fifth leading risk factor behind theworld – wide mortality. Ever growing population size feeding industrial activity through demand channel, vehicular pollution accompanied by rapid urbanization and burning of fossil fuels pose a serious threat to clean air. Some major air pollutants under study in the city of Prayagraj are Nitrogen Dioxide (NO2), Particulate Matter (PM10) and Sulphur Dioxide (SO2). Pollution profile of the city localityi.e. Rambagh, Johnstonganj, Alopibagh, Crossing Mahalakshmi talkies and Bharat Yantra Nigam are studied. PM10 level of exposure is serious in Crossing Mahalakshmi talkiesand Alopibagh area as exposure to very high level in the range of 250 – 400 µg/m3 occurs for the longest duration of time. Alopibagh, Johnstonganj and Rambagh shows critical level of Nitrogen Dioxide indicating higher vehicular movement in these areas. Trend wise, SO2 component has spiked above 12 µg/m3 at Rambagh, Johnstonganj and Alopibagh during the onset of winters season in 2016. Similar phenomenon was seen at Bharat Yantra Nigam and Crossing Mahalakshmi talkies during winter season of 2019. Arrival of monsoon tend to lower pollutants content in the outdoor ambient air quality. Overall air quality is in critical zone at Alopibagh for 45 per cent of the time period followed by Johnstonganj. Crossing Mahalakshmi talkies and Bharat Yantra Nigamshows critical air quality for more than 60 per cent of the time period which calls for urgent action to prevent them from entering the critical zone. Overall air quality of Prayagraj is range bound with air pollutants improve during the monsoon season. However, improvement in air quality has reduced in the last two years as fall in air pollutants is less in 2018 and 2019 monsoon compared to previous two years. The findings of the paper will help the administration, municipal corporation and various stake holders of the city to take targeted measures locality wise towards pollution control depending upon pollutants concentration and exposure area – wise. It will also raise public awareness about pollutant levels in their area.


Author(s):  
Marjan Senegačnik ◽  
Davorin Žnidarič ◽  
Drago Vuk

In 2020 the entire world was severely affected by COVID -19 epidemics. Because of preventing of the SARS Cov 2 virus spread there was necessary to introduce considerable restrictions of movement of citizens. This resulted in various negative effects in the field of economy. However, as road traffic is an important source of pollution – particularly of emissions of air pollutants and greenhouse gases it could be expected that these mobility restrictions result in certain positive effects on the environment. The paper will try to estimate the air quality during the period of epidemics when mobility was severely restricted (second half of March and April 2020, second half of October, November and December 2020). The review will be limited to those kinds of pollutants which are particularly related to road traffic (nitrogen oxides, particulate matter, ozone) as well as to carbon dioxide as the most important greenhouse gas.


2015 ◽  
Vol 4 (2) ◽  
pp. 358 ◽  
Author(s):  
Raslan Alenezi ◽  
Bader Al-anezi

In this study, hourly mean continuous air pollution data for the year 2010 from two monitoring stations in major urban districts in the State of Kuwait were analyzed. The ambient air quality in the Al-Mansouriah and Al-Jahra districts was evaluated in terms of the hourly average concentrations of selected major air pollutants during the winter and summer seasons. The diurnal variations of these pollutants were analyzed, and in-depth comparisons of the two pollutant concentrations for the two districts were conducted to determine the predominant sources of the air pollutants. The concentrations of CO, PM10 and NO2 in the two districts exhibited different patterns in the summer and winter due to differences in the activities that take place in the surrounding areas. The concentrations of SO2 were high in both cities because of the Al-Doha power plant and oil fields near the city in Al-Jahra. The ozone concentration is highly correlated with NOx emissions and is greater in the summer than in the winter. The results confirm that road traffic is a major source of air pollution in the Al-Mansouriah district. The Al-Doha power plant and the oil fields near Al-Jahra greatly affect the air quality in that district.


2017 ◽  
Vol 189 ◽  
pp. 36-45 ◽  
Author(s):  
L. Megido ◽  
L. Negral ◽  
L. Castrillón ◽  
Y. Fernández-Nava ◽  
B. Suárez-Peña ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 998
Author(s):  
René Parra ◽  
Claudia Espinoza

On-road traffic is the primary source of air pollutants in Cuenca (2500 m. a.s.l.), an Andean city in Ecuador. Most of the buses in the country run on diesel, emitting high amounts of NOx (NO + NO2) and PM2.5, among other air pollutants. Currently, an electric tram system is beginning to operate in this city, accompanied by new routes for urban buses, changing the spatial distribution of the city’s emissions, and alleviating the impact in the historic center. The Ecuadorian energy efficiency law requires that all vehicles incorporated into the public transportation system must be electric by 2025. As an early and preliminary assessment of the impact of this shift, we simulated the air quality during two scenarios: (1) A reference scenario corresponding to buses running on diesel (DB) and (2) the future scenario with electric buses (EB). We used the Eulerian Weather Research and Forecasting with Chemistry (WRF-Chem) model for simulating the air quality during September, based on the last available emission inventory (year 2014). The difference in the results of the two scenarios (DB-EB) showed decreases in the daily maximum hourly NO2 (between 0.8 to 16.4 µg m−3, median 7.1 µg m−3), and in the 24-h mean PM2.5 (0.2 to 1.8 µg m−3, median 0.9 µg m−3) concentrations. However, the daily maximum 8-h mean ozone (O3) increased (1.1 to 8.0 µg m−3, median 3.5 µg m−3). Apart from the primary air quality benefits acquired due to decreases in NO2 and PM2.5 levels, and owing to the volatile organic compounds (VOC)-limited regime for O3 production in this city, modeling suggests that VOC controls should accompany future NOx reduction for avoiding increases in O3. Modeled tendencies of these pollutants when moving from the DB to EB scenario were consistent with the tendencies observed during the COVID-19 lockdown in this city, which is a unique reference for appreciating the potentiality and identifying insights for air quality improvements. This consistency supports the approach and results of this contribution, which provides early insights into the effects on air quality due to the recent operability of the electric tram and the future shift from diesel to electric buses in Cuenca.


Sign in / Sign up

Export Citation Format

Share Document