scholarly journals Design and Realization of Intelligent Phase-controlled System for Permanent Magnetic Actuator of AC Contactor

2020 ◽  
Vol 165 ◽  
pp. 06019
Author(s):  
Chen Ya bin ◽  
Zhang Zhen tao ◽  
Li Qiang ◽  
Zou Ping Guo

When the AC contactor switches the capacitor bank, the phase angle of the power grid is random, so the electromagnetic transient process will generate large inrush current and overvoltage, causing large disturbance to the power system. A set of AC contactor with permanent magnetic actuator (PMA) and its intelligent phase selection control system are designed to solve this problem. Firstly, the PMA is designed. The dynamic characteristics of the actuator are simulated and analyzed in ANSOFT to meet the performance requirements of phase selection control. Then the principle of phase selection control and the strategy of switching capacitor bank are analyzed. Based on this, the software and hardware of intelligent phase selection control system are designed, including phase selection control module, IGBT driver module and coil discharge module. Finally, the experimental verification is carried out on the designed AC contactor. The test results show that the phase selection errors of the designed intelligence system are within 1°, and the contactor closing and opening time deviations are within 0.5ms, which means the system can effectively realize the closing and opening control at the specified phase angle.

2014 ◽  
Vol 703 ◽  
pp. 114-118
Author(s):  
Guang Cai Zhang ◽  
Hong Fu Ai ◽  
Ya Jie Xu ◽  
Qiao Yan Chen ◽  
Xiao Dong Yang

This paper introduces the design of permanent magnet that can been used to small nuclear magnetic resonance (NMR) system, and its static magnetic field simulation analysis uses Ansoft's Maxwell software. According to the theory of magnetic circuit design and the performance requirements of magnetic field, An H-style permanent magnetic actuator has been designed, and it can generate uniform magnetic field larger than 0.4 T in the interested region of this actuator. The static magnetic field simulation analysis of this permanent magnetic actuator has done by Ansoft's Maxwell 3D software, and the experimental results show that the design of permanent magnet can meet the requirements.


1968 ◽  
Vol 10 (2) ◽  
pp. 91-100 ◽  
Author(s):  
C. K. Benington

Using a simplified mathematical model, the conventional railway wheelset and suspension unit is shown to behave as a closed-loop guidance control system. The centre-line of the track corresponds to the input, and the lateral position of the centroid of the wheelset to the output. Analysis of the system shows that, while it may be made stable at up to high speeds, the performance in the stable region is unsatisfactory in certain respects. This is attributed to the large forces of interaction between the wheels and rails at the points of contact, arising, in the case of the conventional wheelset, from creepage. These forces may be reduced and controlled by interposing a coupling having viscous characteristics between the wheels, in place of the rigid axle. The new arrangement is shown to be much more flexible, and capable of fulfilling a wide range of performance requirements.


2018 ◽  
Author(s):  
Sizwe Makhunga ◽  
Tivani P. Mashamba-Thompson ◽  
Mbuzeleni Hlongwa ◽  
Khumbulani W. Hlongwana

Author(s):  
Neng Wan ◽  
Guangping Zeng ◽  
Chunguang Zhang ◽  
Dingqi Pan ◽  
Songtao Cai

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.


Author(s):  
Chuan Qu ◽  
Yong-Chen Pei ◽  
Qing-Yuan Xin ◽  
Zhen-Xing Li ◽  
Long Xu

Magnetic-based driving applications are receiving increasing attention. This study proposed a novel reciprocating permanent magnetic actuator (PMA) to manipulate magnetic micro robots to impact and clear blockages inside fluid pipes in a linear path. The PMA consisted of a cylindrical permanent magnet and a crank slider structure. A straight pipe with a circular cross-sectional area was located in front of the actuator to study the driving performance of PMA. A micro permanent magnet with a cylinder shape was employed as a working robot for manipulation inside the pipe. Firstly, analytical formulas were derived to obtain the magnetic driving force acting on the micro robot and determine the most suitable magnet configuration. The finite element simulation verified the analytical calculation. The developed reciprocating PMA prototype was then introduced, and the PMA and micro robot’s motion performance was analysed. Lastly, preliminary experiments were carried out for evaluating the micro robot’s motion characteristics. Performance tests for different excitation frequencies, flow rates, viscosities, and axial distances, indicating that PMA could manipulate the magnetic micro robot inside the pipe. The results confirmed that the developed PMA could effectively drive the micro robot with the advantage of consecutive magnetic driving. Especially, the micro robot featured good flexibility, rapid response, and a simple structure, suggesting that this micro robot may play an important role in industrial and medical applications, such as blockage elimination and thrombus clearance.


2014 ◽  
Vol 556-562 ◽  
pp. 1358-1361 ◽  
Author(s):  
Wen Bo Zhu ◽  
Fen Zhu Ji ◽  
Xiao Xu Zhou

Wire of the brake pedal is not directly connected to the hydraulic environment in the braking By-wire system so the driver has no direct pedal feel. Then pedal simulator is an important part in the brake-by-wire system. A pedal force simulator was designed based on the traditional brake pedal curve of pedal force and pedal travel, AMESim and Matlab / Simulink were used as a platform to build simulation models and control algorithms. The simulation results show that the pedal stroke simulator and the control strategy meet the performance requirements of traditional braking system. It can be used in brake by wire system.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Shiqiang Wang ◽  
Jianchun Xing ◽  
Ziyan Jiang ◽  
Juelong Li

A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC) system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.


2015 ◽  
Vol 738-739 ◽  
pp. 935-940 ◽  
Author(s):  
Zhen Li ◽  
Pei Xu ◽  
Yu Ping Ouyang ◽  
Shi Lei Lv ◽  
Qiu Fang Dai

In order to reduce operation risk and working intensity in mountainous orchard transportation and to realize optimized control for the mountainous orchard electric-drive monorail transportation system, a mountainous orchard electric-drive monorail transporter control system was designed and developed in this study. The system mainly consists of modules as: manual and remote control, positioning, obstacle avoidance, speed measurement, motor control, electric-magnetic break, and the position limit. The driving speed, current consumption, break control, and battery pack running ability experiments were conducted to test the control system. Results indicated that, the transporter’s driving speed is 0.60~0.58 m/s when it is running on the ground with the load weight from 0 to 100kg. This speed is little affected by the load weight. The transporter’s driving speed is 0.45~0.28 m/s when it is climbing a steep hill with an angle of 39°. That speed is critically affected by the load weight. In further improvements, a shift mechanism will be introduced so that adjustable gear ratio could be achieved thus solve the current overload problem in a full load situation.


Sign in / Sign up

Export Citation Format

Share Document