scholarly journals The Impact of Infiltration on Heating Systems Dimensioning in Estonian Climate

2020 ◽  
Vol 172 ◽  
pp. 05004
Author(s):  
Raimo Simson ◽  
Taaniel Rebane ◽  
Martin Kiil ◽  
Martin Thalfeldt ◽  
Jarek Kurnitski

In this study we analysed the climatic conditions for infiltration estimation, different calculation methods and infiltration impact on heat load for heating systems dimensioning. To determine the wind conditions at low air temperatures of the coastal- and inland climatic zones in Estonia, 42 years of climatic data for Tallinn and Tartu were investigated. Calculation models with detailed air leakages were constructed of a single and two-storey detached house using dynamic simulation software IDA ICE. Simulations were carried out with the constructed calculation models, simulating various wind and sheltering conditions to determine the heating load of the buildings under measured wind conditions at the design external air temperatures. The simulation results were compared with results calculated with European Standard EN 12831:2017, methodology given in the Estonian regulation for calculating energy performance of buildings and with simulations using the default settings in IDA ICE based on the ASHRAE design day conditions. The percentage of heat losses caused by infiltration was found as 13-16% of all heat losses for the studied buildings. Simulations with historical climate periods showed that even in windy weather conditions the heating system dimensioned by the methods analysed may not be able to provide the required indoor air temperature. Analysis using the coldest and windiest periods showed that when systems are dimensioned by the studied methods, the highest decline in indoor air temperature occurs on the windiest day and not on the coldest day. The impact of high wind speeds and low sheltering conditions resulted up to 50% of all heat losses.

Author(s):  
M. Hamdani ◽  
S.M.A. Bekkouche ◽  
M.K. Cherier ◽  
N. Benamrane ◽  
T. Benouaz

The objective of this study was to use simulation as a tool to establish a possible relationship between orientation and energy performance of conventional residential buildings in Ghardaia. The findings of this study, when integrated in our site, will help in the realisation of efficient and sustainable energy performance of our built environment.To illustrate the impact of the guidance on indoor air temperatures and solar gain of habitat has been studied for this type of climate (semi-arid). Along with this simulation using a TRNSYS (version16.1) was performed to validate the results of the field and to test several possibilities for guidance and improvements to determine the elements that can be used to better conditions.From these results, it appears that the north and south directions during this period are more favorable with a small advantage for the south orientation. This is explained by the amounts of daily radiation incident on the two facades that are not significantly different [1, 2].


2016 ◽  
Vol 16 (1) ◽  
pp. 7-20 ◽  
Author(s):  
Renata De Vecchi ◽  
Christhina Maria Cândido ◽  
Roberto Lamberts

Abstract Currently, there is a rising trend for commercial buildings to use air conditioning to provide indoor thermal comfort. This paper focuses on the impact of prolonged exposure to indoor air-conditioned environments on occupants' thermal acceptability and preferences in a mixed-mode building in Brazil. Questionnaires were administered while indoor microclimatic measurements were carried out (i.e., air temperature, radiant air temperature, air speed and humidity). Results suggest significant differences in occupants' thermal acceptability and cooling preferences based on thermal history; differences were found between groups based on different physical characteristics (i.e., different gender and body condition). The findings also indicated a significant potential to implement temperature fluctuations indoors when occupants are exposed to air conditioning environments in warm and humid climates.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 693 ◽  
Author(s):  
Mehdi Taebnia ◽  
Sander Toomla ◽  
Lauri Leppä ◽  
Jarek Kurnitski

Indoor ice rink arenas are among the foremost consumers of energy within building sector due to their exclusive indoor conditions. A single ice rink arena may consume energy of up to 3500 MWh annually, indicating the potential for energy saving. The cooling effect of the ice pad, which is the main source for heat loss, causes a vertical indoor air temperature gradient. The objective of the present study is twofold: (i) to study vertical temperature stratification of indoor air, and how it impacts on heat load toward the ice pad; (ii) to investigate the energy performance of air handling units (AHU), as well as the effects of various AHU layouts on ice rinks’ energy consumption. To this end, six AHU configurations with different air-distribution solutions are presented, based on existing arenas in Finland. The results of the study verify that cooling energy demand can significantly be reduced by 38 percent if indoor temperature gradient approaches 1 °C/m. This is implemented through air distribution solutions. Moreover, the cooling energy demand for dehumidification is decreased to 59.5 percent through precisely planning the AHU layout, particularly at the cooling coil and heat recovery sections. The study reveals that a more customized air distribution results in less stratified indoor air temperature.


2019 ◽  
Vol 29 (7) ◽  
pp. 987-1005 ◽  
Author(s):  
Shahla Ghaffari Jabbari ◽  
Aida Maleki ◽  
Mohammad Ali Kaynezhad ◽  
Bjarne W. Olesen

The study was conducted to investigate thermal adaptation and the impact of individual differences on developing thermal tolerance when the outdoor temperature falls below 10°C. The applicability of the predicted mean vote (PMV) model was investigated, too. The concept of occupant’s ‘Temperament’ was evaluated as a psychological-adaptation factor. Two main hypotheses were: (a) people with different temperaments would experience different thermal sensations and (b) the classic PMV- predicted percentage dissatisfied (PPD) model is capable of predicting the neutral sensation in heated buildings under cold outdoor temperatures. There was a direct relationship between individual temperament and clothing level as well as thermal sensation. The occupants who were assessed to have cold temperament tend to wear thicker clothes and were more sensitive to variations in indoor air temperature than others. Females with a cold temperament were more than twice as likely to be affected by indoor air temperature as those with a warm temperament. The PMV-PPD model was able to predict the mean neutral temperature in the heated buildings even when the outdoor temperature fell below 10°C. However, when occupants were able to control high indoor temperature, the percentage of true prediction of actual mean votes by the adaptive thermal heat balance model was more than that by the classic PMV model.


2018 ◽  
Vol 193 ◽  
pp. 03006 ◽  
Author(s):  
Mikhail Pavlov ◽  
Sergey Lukin ◽  
Oleg Derevianko

Commercially available greenhouses are commonly used for provision of year-round growing of agricultural crops at protected ground. In order to provide favorable conditions for plants growth these agricultural constructions should be equipped by artificial heating systems in cold sea-sons. This work presents an overview of basic traditional and alternative heating systems which find their applications in agriculture. Advantages of application of roof radiant heating with infrared radiation sources for green-houses are discussed. It was discovered that now there is no appropriate mathematical model of greenhouse radiant heating, which takes into account both heat and mass exchange processes. Here we propose a mathematical model of radiant heating, which includes equation system of both heat and mass exchange processes for greenhouse, its enclosure and soil. The numer-ical calculations were performed for commercially available greenhouse “Farmer 7.5”. We investigated the impact of external air temperature and heat exchange rate on the following greenhouse radiant heating characteris-tics: internal air temperature, heating system thermal power and water dis-charge for soil watering.


1962 ◽  
Vol 17 (2) ◽  
pp. 311-316 ◽  
Author(s):  
F. N. Craig ◽  
E. G. Cummings

For two men walking on a treadmill and wearing two layers of permeable clothing, the same physiological strain measured by the rate of increase in mean body temperature could be produced a) next to a building outdoors in the sunshine with an average air temperature of 85 F and humidity of 20 mm Hg and b) indoors with the same humidity and an air temperature 10 F higher. Under these conditions, the underwear was mainly wet with sweat and the outer layer was mainly dry. In comparable indoor tests on a third subject, the temperature of the underwear approached equilibrium 1 or 2 F lower than the temperature of the skin at air temperatures of 85 and 115 F. The error in calculating clothing insulation introduced by assuming the clothing to be dry is determined by the size and direction of the temperature gradient between skin and air. Adding 10 F to the indoor air temperature does not duplicate all the effects of sunshine. Submitted on September 15, 1961


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marta Román ◽  
Salvador Román ◽  
Elsa Vázquez ◽  
Jesús Troncoso ◽  
Celia Olabarria

AbstractThe abundance and distribution of intertidal canopy-forming macroalgae are threatened by the increase in sea surface temperature and in the frequency and intensity of heatwaves caused by global warming. This study evaluated the physiological response of predominant intertidal macroalgae in the NW Iberian Peninsula (Bifurcaria bifurcata, Cystoseira tamariscifolia and Codium tomentosum) to increased seawater temperature during immersion and increased air temperatures during consecutive emersion cycles. We combined field mensuration and laboratory experiments in which we measured mortality, growth, maximum quantum yield and C:N content of the macroalgae. Air temperature was a critical factor in determining physiological responses and survivorship of all species, whereas high seawater temperature had sublethal effects. Cystoseira tamariscifolia suffered the greatest decreases in Fv/Fm, growth and the highest mortality under higher air temperatures, whereas C. tomentosum was the most resistant and resilient species. Two consecutive cycles of emersion under atmospheric heatwaves caused cumulative stress in all three macroalgae, affecting the physiological performance and increasing the mortality. The potential expansion of the warm-temperate species B. bifurcata, C. tamariscifolia and C. tomentosum in the NW Iberian Peninsula in response to increasing seawater temperature may be affected by the impact of increased air temperature, especially in a region where the incidence of atmospheric heatwaves is expected to increase.


2020 ◽  
Vol 12 (22) ◽  
pp. 9672
Author(s):  
Mamdooh Alwetaishi ◽  
Ashraf Balabel ◽  
Ahmed Abdelhafiz ◽  
Usama Issa ◽  
Ibrahim Sharaky ◽  
...  

The study investigated the level of thermal comfort in historical buildings located at a relatively high altitude in the Arabian Desert of Saudi Arabia. The study focused on the impact of the use of thermal mass and orientation on the level of thermal performance at Shubra and Boqri Palaces. Qualitative and quantitative analyses were used in this study, including a questionnaire interview with architecture experts living at the relatively high altitude of Taif city, to obtain data and information from local experts. The computer software TAS EDSL was used along with on-site equipment, such as thermal imaging cameras and data loggers, to observe the physical conditions of the building in terms of its thermal performance. The study revealed that the experts’ age and years of experience were important aspects while collecting data from them during the survey. The use of thermal mass had a slight impact on the indoor air temperature as well as the energy consumption, but it helped in providing thermal comfort. Use of ventilation can improve thermal comfort level. Evaporative cooling technique has a considerable impact on reducing indoor air temperature with 4 °C drop, improving the thermal comfort sensation level. The novelty of this work is that, it links the outcomes of qualitative results of experts with field monitoring as well as computer modelling. This can contribute as method to accurately collect data in similar case studies.


Author(s):  
Jana Škvareninová

In the years 2007–2013 we performed phenological observations of common hazel (Corylus avellana L.), blackthorn (Prunus spinosa L.), and hawthorn (Crataegus oxyacantha L.) at two locations of central Slovakia situated at elevations of 300 m and 530 m a.s.l. The phenophase of first leaves of all tree species started in the second half of April on average, and was conditioned by the average daily air temperatures above 0 °C. The earliest onset was observed at both locations in 2007 due to the highest average air temperature during the observed period, which in March reached the value of 6.1 °C. Colouring of leaves started in the second and third decades of September. Both phenophases began earlier at the location situated at the higher elevation due to the effect of aspect, terrain, and soil depth. During the last 7 years, the average length of the growing season of tree species situated at an elevation of 300 m was from 136 to 152 days, in more extreme conditions at an elevation of 530 m the growing season was shorter by 12 days in the case of blackthorn and by 5 days in the case of hawthorn.


Sign in / Sign up

Export Citation Format

Share Document