scholarly journals A comparative experimental study on advance geological prediction between TETSP and TSP303

2021 ◽  
Vol 252 ◽  
pp. 01034
Author(s):  
Yue Liu ◽  
Jun-jie Li

We introduce a new tunnel long distance prediction seismic reflection imaging system called TETSP. We use TETSP and the latest generation TSP303 to advance geological comparison detection in Zhangcun tunnel in Thousand Island Lake-Hangzhou water transfer project. Firstly, we introduce the layout of TETSP observation system and data processing flow. Secondly, we expound the differences between TETSP and TSP303 in aspect of geophone coupling and acoustic interference suppression. Lastly, we analyze the characteristics of reflection anomalies in the karst cave zone of the rock mass. The actual tunnel excavation results verify the reliability of the TSP303 and TETSP prediction. Several conclusions are drawn as follow. Firstly, two kinds of seismic reflection technology both can detect whose wave impedance interface exist significant difference in front of tunnel face, but the TSP303 is more accurate. Secondly, the poor integrity of the rock mass is corresponding to the low velocity of P-wave and S-wave.

Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 690-700 ◽  
Author(s):  
Josef Holzschuh

Compressional (P) wave and shear (S) wave seismic reflection techniques were used to delineate the sand and gravel aquifer within a highly saline clay‐filled paleochannel in the Eastern Goldfields of Western Australia. The seismic refraction and gravity methods were also used to investigate the paleochannel. The unsaturated loose fine‐grained sand up to 10 m in depth at the surface is a major factor in degrading subsurface imaging. The seismic processing needed to be precise, with accurate static corrections and normal moveout corrections. Deconvolution enhanced the aquifer and other paleochannel reflectors. P‐wave reflection and refraction layer depths had good correlation and showed a total of six boundaries: (1) water table, (2) change in velocity (compaction) in the paleochannel sediments, (3) sand and gravel aquifer, (4) red‐brown saprolite and green saprolite boundary, (5) weathered bedrock, and (6) unweathered bedrock. P‐wave explosive and hammer sources were found to have similar signal characteristics, and the aquifer and bedrock were both imaged using the hammer source. The deep shots below the water table have the most broadband frequency response for reflections, but stacking clear reflections was difficult. The S‐wave reflection results showed high lateral and vertical resolution of the basal saprolite clay, the sand and gravel aquifer, and very shallow clays above the aquifer. The S‐wave reflection stacking velocities were 10–20% of the P‐waves, increasing the resolution of the S‐wave section. The gravity data were modelled to fit the known drilling and P‐wave seismic reflection depths. The refraction results did not identify the top of bedrock, so refraction depths were not used for the gravity modeling in this highly weathered environment. The final gravity model mapped the bedrock topography beyond the lateral extent of the seismic and drilling data.


2017 ◽  
Vol 21 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Bo Wang ◽  
Shengdong Liu ◽  
Fubao Zhou ◽  
Jun Zhang ◽  
Fangkun Zheng

Small fault ahead of the tunnel face in coal roadway is the important hidden hazard factor of coal and gas outburst accidents. The study of small fault prediction has important practical significance, which is the urgent demand of coal mine safety production. The diffraction of breakpoint can be used to identify the fault. However, unlike surface seismic exploration, the diffraction is with approximately horizontal incidence when the advanced detection is carried out in the roadway. The common advanced detection system is mainly as the reference of traffic tunnel, without considering the influence of low-velocity coal seam. Considering the influence of an acoustic wave of the roadway cavity and channel wave of the coal seam, the advanced detection model of small fault ahead of tunnel face is established. Diffraction advanced observation system in which sources located in front of tunnel face is constructed, and the numerical calculation of the high-order staggered-grid finite difference is carried out. The simulation results show that: Compared with the data collected by reflection observation system, in seismic records acquired by diffraction observation system, the suppression effect of acoustic wave is appeared. The diffracted P-wave of the breakpoint of component X is clear with strong energy and short-wave group. Multiple diffractions of the breakpoint are not found, but the multiple diffraction of tunnel face endpoint is obvious. The difference between breakpoint diffraction and multiple diffractions of the endpoint is clear, and diffracted P-wave of the breakpoint is easy to identify. The multiple reflected channel wave between the fault and the tunnel face is very obvious, and the reflected channel wave of small fault is so hard to identify. Migration results show that the imaging resolution of diffracted P-wave of small fault is higher than the reflected channel wave, and breakpoint location of imaging is consistent with the actual model.


1966 ◽  
Vol 56 (1) ◽  
pp. 201-221
Author(s):  
Shuzo Asano

abstract The effect of a corrugated interface on wave propagation is considered by using the method that was first applied to acoustical gratings by Rayleigh. The problem is what happens when a plane P wave is incident on a corrugated interface that separates two semi-infinite media. As is well known, there are irregular (scattered) waves as well as regular waves. By assuming both the amplitude and the slope of a corrugated interface to be small, quantities of the order of the square of corrugation amplitude are taken into account. In the case of normal incidence for three models considered, the effect of corrugation on reflection is larger than the effect of corrugation on refraction; the amplitude of the regularly reflected waves decreases, and that of the regularly refracted waves and of the irregular waves increases, as the corrugation amplitude becomes larger. Generally, the larger the velocity contrast, the larger the variation of wave amplitude with the wavelength and the amplitude of corrugation. The S wave component generally becomes larger as the wavelength of corrugation becomes smaller. Boundary waves exist, depending upon the ratio of wavelength of corrugation to that of the incident wave. For a specified interface, it is possible that there is a significant difference in wave amplitude as a function of the elastic constants. In the case of oblique incidence, computation was carried out for angles of incidence smaller than 15° for one model. For these small angles of incidence, almost all results for the case of normal incidence still hold. Furthermore, it can be concluded that the effect of the angle of incidence on reflected S waves is larger than for the other waves and that large differences in the amplitudes of waves at different angles of incidence may be expected for the irregular waves.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. B55-B70 ◽  
Author(s):  
E. M. Takam Takougang ◽  
A. J. Calvert

To obtain a higher resolution quantitative P-wave velocity model, 2D waveform tomography was applied to seismic reflection data from the Queen Charlotte sedimentary basin off the west coast of Canada. The forward modeling and inversion were implemented in the frequency domain using the visco-acoustic wave equation. Field data preconditioning consisted of f-k filtering, 2D amplitude scaling, shot-to-shot amplitude balancing, and time windowing. The field data were inverted between 7 and 13.66 Hz, with attenuation introduced for frequencies ≥ 10.5 Hz to improve the final velocity model; two different approaches to sampling the frequencies were evaluated. The limited maximum offset of the marine data (3770 m) and the relatively high starting frequency (7 Hz) were the main challenges encountered during the inversion. An inversion strategy that successively recovered shallow-to-deep structures was designed to mitigate these issues. The inclusion of later arrivals in the waveform tomography resulted in a velocity model that extends to a depth of approximately 1200 m, twice the maximum depth of ray coverage in the ray-based tomography. Overall, there is a good agreement between the velocity model and a sonic log from a well on the seismic line, as well as between modeled shot gathers and field data. Anomalous zones of low velocity in the model correspond to previously identified faults or their upward continuation into the shallow Pliocene section where they are not readily identifiable in the conventional migration.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. E205-E214 ◽  
Author(s):  
Minsu Cha ◽  
Gye-Chun Cho ◽  
J. Carlos Santamarina

Field data suggest that stress level and joint condition affect shear-wave propagation in jointed rock masses. However, the study of long-wavelength propagation in a jointed rock mass is challenging in the laboratory, and limited data are available under controlled test conditions. Long-wavelength P-wave and S-wave propagation normal to joints, using an axially loaded jointed column device, reproduces a range of joint conditions. The effects of the normal stress, loading history, joint spacing, matched surface topography (i.e., joint roughness), joint cementation (e.g., after grouting), joint opening, and plasticity of the joint filling on the P-wave and S-wave velocities and on S-wave attenuation are notable. The ratio [Formula: see text] in jointed rock masses differs from that found in homogeneous continua. The concept of Poisson’s ratio as a function of [Formula: see text] is unwarranted, and [Formula: see text] can be interpreted in terms of jointed characteristics. Analytic models that consider stress-dependent stiffness and frictional loss in joints as well as stress-independent properties of intact rocks can model experimental observations properly and extract joint properties from rock-mass test data. Thus, joint properties and normal stress have a prevalent role in propagation velocity and attenuation in jointed rock masses.


2021 ◽  
Vol 252 ◽  
pp. 01030
Author(s):  
Ming-xian Xu ◽  
Yong-xia Wei ◽  
Jun-jie Li

When there are water rich-karst caves or large faults in front of the tunnel face, blind construction may easily cause safety accidents such as water inrush, mud outburst and collapse. Using advanced geological prediction methods to predict the spatial distribution of unfavorable geological bodies can greatly reduce construction risks. This paper introduces a new seismic reflection imaging system TSP-SK, and discusses the features, working mode and data processing methods of the prediction system, and verifies the reliability of TSP-SK through practical tunnel engineering prediction case. The result shows that TSP-SK can collect high signal-to-noise ratio seismic reflection data with little interference from clean first arrival when the water sealing effect of explosives in the borehole is good. Good reflection wave pickup effect can be obtained when the maximum gain of inverse Q filter and Q value are taken in the range of 15 to 30. The prediction results of TSP-SK are in good agreement with the actual excavation results, that is, the areas with low P-wave velocity indicate poor rock mass quality, and the area of low S-wave velocity is more likely to produce water from construction.


2021 ◽  
Vol 283 ◽  
pp. 01013
Author(s):  
Hewen Liu ◽  
Zhifa Yu ◽  
Hao Zhang

For the Da-puling tunnel of Puqing Expressway in Guangxi, the advanced geological prediction is carried out by combining TSP long-distance forecast method with short distance geological radar method. This paper describes the principle of seismic wave propagation in elastic medium, as well as the key points of data processing and analysis, some requirements that should be paid attention to the field test and scientific way of image interpretation put forward to improve the accuracy of prediction; When TSP is deployed, it should be sharp angle with potential joint surface. P-wave reacts surrounding rock properties, the shear wave is closely related to the transverse skeleton of medium. In data interpretation, it is necessary to focus on the analysis of the characteristics of P-wave and S-wave, weakening Poisson’s ratio and Young’s modulus. TSP and GPR can achieve the mutual complement and improve the detection accuracy.


1969 ◽  
Vol 59 (1) ◽  
pp. 385-398 ◽  
Author(s):  
Otto W. Nuttli

Abstract The underground Nevada explosions HALF-BEAK and GREELEY were unique in creating relatively large amplitude and long-period body S waves which could be detected at teleseismic distances. Observations of the travel times of these S waves provide a surface focus travel-time curve which in its major features is similar to a curve calculated from the upper mantle velocity model of Ibrahim and Nuttli (1967). This model includes a low-velocity channel at a depth of 150 to 200 km and regions of rapidly increasing velocity beginning at depths of 400 and 750 km. Observations of the S wave amplitudes suggest that a discontinuous increase in velocity occurs at 400 km, whereas at 750 km the velocity is continuous but the velocity gradient discontinuous. Body wave magnitudes calculated from S amplitudes are 5.3 ± 0.2 for GREELEY and 4.9 ± 0.2 for HALF-BEAK. These are about one unit less than body wave magnitudes from P amplitudes as reported by others. The shape and orientation of the radiation pattern of SH for both explosions are consistent with the Rayleigh and P-wave amplitude distribution of BILBY as given by Toksoz and Clermont (1967). This suggests that the regional stress field is the same at all three sites, and that the direction of cracking as well as the strain energy release in the elastic zone outside the cavity is determined by the regional stress field.


2017 ◽  
Vol 22 (4) ◽  
pp. 375-384
Author(s):  
Ahmed Ismail ◽  
Adel Abdelnaby ◽  
Timothy Larson

A study was conducted to determine whether the structural failure of a house in a residential subdivision in southern Illinois was caused by the collapse of an old underground coal mine ( i.e. mine subsidence) or as a result of a landslide. The house was displaced approximately 5 m downhill towards an engineered lake behind it. To detect any old mines near the house, we acquired high-resolution S-wave seismic reflection profiles along the roads surrounding the subdivision and a series of high-resolution P-wave reflection profiles in the immediate vicinity of the house. The S-wave seismic reflection profiles imaged a strong shallow horizon that we interpreted as Pennsylvanian siltstone overlying the Mecca Quarry Shale and Colchester Coal, which had been previously mined in the area. Locally, this horizon showed no evidence of any recent mining activities. The high-resolution P-wave reflection profiles imaged a steeply dipping bedrock with a 20° dip at the house location. These results exclude mine subsidence from being the cause for the house failure. To investigate land sliding as a possible cause of the house failure, depths to bedrock from the seismic results together with the soil type information were used to model the soil materials with a Mohr-Coulomb stress-strain model. The engineering model demonstrated that a land slide is a more plausible cause for the house failure, which agrees with the seismic results.


2013 ◽  
Vol 5 (2) ◽  
pp. 1191-1257 ◽  
Author(s):  
T. Satsukawa ◽  
B. Ildefonse ◽  
D. Mainprice ◽  
L. F. G. Morales ◽  
K. Michibayashi ◽  
...  

Abstract. This study presents a unique database of 170 plagioclase Crystallographic Preferred Orientations (CPO) of variously deformed gabbroic rocks. The CPO characteristics as a function of the deformation regime (magmatic or crystal-plastic) are outlined and discussed. The studied samples are dominantly from slow- and fast-spread present-day ocean crust, as well as from the Oman ophiolite. Plagioclase is the dominant mineral phase in the studied samples. Plagioclase CPOs are grouped in three main categories: Axial-B, a strong point alignment of (010) with a girdle distribution of [100]; Axial-A, a strong point maximum concentration of [100] with parallel girdle distributions of (010) and (001); and P-type, point maxima of [100], (010), and (001). A majority of CPO patterns are Axial-B and P-type, in samples showing either magmatic or crystal-plastic deformation textures. Axial-A CPOs are less common; they represent 21% of the samples deformed by crystal-plastic flow. Although fabric strength (ODF J-index) does not show any consistent variation as a function of the CPO patterns, there is a significant difference in the relationship between the ODF and pole figures J-indices; the magmatic type microstructures have high (010) pole figures J-indices, which increase linearly with ODF J-index, whereas the high [100] pole figures J-indices of plastically deformed samples vary in a more scattered manner with ODF J-index. The multistage nature of plastic deformation superposed on a magmatic structure compared with magmatic flow, and the large number of possible slip-systems in plagioclase probably account for these differences. Calculated seismic properties (P wave and S wave velocities and anisotropies) of plagioclase aggregates show that anisotropy (up to 12% for P wave and 14% for S wave) tends to increase as a function of ODF J-index. In comparison with the olivine 1998 CPO database, the magnitude of P wave anisotropy for a given J-index is much less than olivine, whereas it is similar for S wave anisotropy. Despite a large variation of fabric patterns and geodynamic setting, seismic properties of plagioclase-rich rocks have similar magnitudes of anisotropy. There is a small difference in the aggregate elastic symmetry, with magmatic microstructures having higher orthorhombic and hexagonal components, whereas plastic deformation microstructures have a slightly higher monoclinic component, possibly correlated with predominant monoclinic simple shear flow in plastically-deformed samples. Overall, plots for CPO strength (ODF J-index), pole figure strength, CPO symmetry and seismic anisotropy show significant scattering. This could be related to sampling statistics, although our database is a factor of ten higher than the olivine database of 1998, or it could be related to the low symmetry (triclinic) structure of plagioclase resulting in the addition of degrees of freedom in the processes creating the CPOs.


Sign in / Sign up

Export Citation Format

Share Document