scholarly journals Environmental assessment of road construction materials and technologies with the use of production wastes

2021 ◽  
Vol 265 ◽  
pp. 04007
Author(s):  
N. G. Mitrofanov ◽  
A. Yu. Sushilova

The following paper presents some results of long-term research on the urgent problem of recycling waste products and their use in road construction. The studied new materials and technologies are justified by the developments of Tyumen Industrial University. The aim of this work is to prove the technique, checking the ecological safety of the road materials with the use of waste products. Research techniques and test subjects are quantitative chemical analysis and biological testing of road material samples with waste additives obtained during drilling and oil production. Along with the standard procedures for analyzing the contamination and toxicity of water extracts, the authors have proposed and tested the evaluation of repeated and long-term extractions, imitating the possible environmental impact of waste products. The obtained results showed the environmental safety of the road-building materials based on wastes.

2021 ◽  
Vol 2021 (24) ◽  
pp. 60-71
Author(s):  
Sergyi Golovko ◽  

Introduction. The paper considers the issues of increasing of road construction materials reuse when repairing of major type pavements, by simultaneous use of hot and cold recycling technologies (in the plant and on the road). Problem statement. At many road construction objects, especially when repairing roads of state importance, designing engineers meet the problem of the need in a significant amount of bituminous materials. There is a question of how to provide such a quantity of these materials and do it economically efficient. Research has shown that it is necessary to use hot and cold recycling technologies economically efficiently. Purpose. Searching for the possibility of arranging of foundation layers, by simultaneously applying of hot and cold recycling technologies. Research methods. Analytical and experimental with the use of computer simulation of a multilayer structure. Results. It has been determined that the upper layers of the foundation can be strengthened by asphalt concrete manufacturing by hot recycling technology (in the plant), and the lower layers by cold recycling mixtures using different types of binders and manufacturing methods (in the plant and on the road). Conclusions. The conducted research allowed to confirm the thesis about the effectiveness of the solution to restore the strength of the capital-type road pavement. The obtained solution will reduce the cost of pavement repair and solve the issue of bituminous materials utilization, which will positively affect the environmental safety of the region.


Author(s):  
Konstantin Pugin

The use of new technologies and raw materials, including man-made materials, in the production of con-struction and road materials increases the risks of forming a negative technogenic load on environmental objects when used in road construction. This is of particular relevance due to the fact that the road network has a long extension in the settlements and as a result has a negative impact on the person. A new methodolo-gy for "green" construction, which is currently being effectively used in a number of developed European countries, can give a comprehensive assessment of the emergence of risks. On the basis of analytical and la-boratory studies it is shown that the methodology of "green" construction used for the evaluation of residen-tial and industrial buildings can not be applied to the evaluation of road construction objects. When as-sessing the building materials used in road construction, the change in their physicochemical condition dur-ing long-term operation in the elements of road structures is not taken into account. It is shown that the emis-sion of environmentally hazardous chemical compounds that make up construction materials increases with the cyclicity of the pH of the medium of their placement, the discontinuity of the surface. It was proposed to include such provisions as "protection from the aquatic environment", "stable pH values of the external envi-ronment" for the formation of a rating system for assessing the "green" construction of motor roads in order to ensure environmental safety.


Vestnik MGSU ◽  
2015 ◽  
pp. 73-87
Author(s):  
Konstantin Georgievich Pugin ◽  
Yakov Iosifovich Vaysman

Basing on life cycle analysis of building materials produced of waste products the authors defined the formation stages of environmental risks of adverse impacts on the environment. The studies have revealed that one of the main environmental risks is the occurrence of secondary emission of pollutants from building materials produced of waste products when used by the end-user, which is not taken into account by the existing regulatory documents defining the environmental safety of construction materials. The questions of prevention of the possible negative impact of the construction materials based on or with addition of production waste while their use on the environment and population as a result of a number of natural and anthropogenic factors, which can lead to negative ecological effects, which are difficult to forecast, are not regulated enough. In the present conditions of the absence of regulatory framework of their ecological safety the wide use of production waste for obtaining construction materials without account for the possible ecological risks may lead to technogenic burden exceeding the acceptable level.The authors defined the main ways to reduce the environmental risks when using the resource potential of waste for the production of building materials by reducing the emissions of these pollutants while reducing their permeability.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ubido Oyem Emmanuel ◽  
Igwe Ogbonnaya ◽  
Ukah Bernadette Uche

AbstractInvestigation into the cause of road failure has been carried out along a 60 km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12 to 61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1–52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2–35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17–43.9%, maximum dry density ranges from 1.51–1.74 g /cm3, specific gravity ranges from 2.52–2.64 and CBR between 3 and 12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20–138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20 m – 240 m along the profile to a depth of 7.60 m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m − 120 m along the profile to a depth of 15 m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Grace Kurniawati ◽  
Lisa Oksri Nelfia ◽  
Ade Okvianti Irlan ◽  
Indrawati Sumeru

Construction is growing rapidly nowadays. Buildings, housing, industry/business centers and highways will require natural aggregates which are natural resources that cannot be renewed. Therefore, we need replacement materials able to replace these natural aggregate. The large amount of plastic waste in fields, based on existing data, causes environmental pollution through it can be reused and useful for building and road construction. Most of communities don’t even know the plastic waste processing technology that allow their use in the construction of house construction such as floors, walls, roofs, and hinges and also road construction with not heavy road loads. The purpose of this activity is to provide the knowledge to the people of RPTRA related to technology for the use of plastic waste for building materials and also road construction in the area in the RPTRA environment considering it is not a public road and hence, with not heavy vehicle. The method used is firstly observation and interview of several houses visited. Then activities about using different types of plastic waste as construction materials. Finally, evaluation of the progress of the project by conducting a survey to people who had met the criteria of being a member of the plastic waste program. The success of this program will be the people’s understanding and a significate growing of any highvalue plastic use as construction material. The benefit of this community service is to increase the knowledge and insight of the people of RPTRA, South Meruya, and West Jakarta City, related to environmentally friendly technologies such as plastic waste processing.


2015 ◽  
Vol 5 (4) ◽  
pp. 94-99 ◽  
Author(s):  
Anna Yur'evna ZHIGULINA ◽  
Natalya Genrikhovna CHUMACHENKO

The article is devoted to problems of creation of comfortable microclimate. Identifi es sources of pollution, completed their evaluation. Special att ention is paid to the selection of environmentally friendly building materials. In the production of building materials where toxic components can be industrial waste, replacing natural raw materials and chemical additives regulating the properties. In the operation of many building materials, especially those based on polymers, it is necessary to control the release of toxic substances resulting from degradation. For the assessment of comfort and environmental safety of housing is offered to create «Passports of residential buildings», which should be provided with information about construction materials used to evaluate this parameter, environmental home safety, including chemical safety as its component.


Author(s):  
Bizzar B. Madzikigwa

The road sector in Botswana continues to develop its road network throughout the country at a tremendous rate. When Botswana gained independence in 1966, it had only 10 km (16 mi) of bitumen road. By 1992 the total length of bituminous surfaced road reached 3500 km (2,175 mi) out of a total road network of 18 000 km (11,285 mi). These statistics clearly show that the majority of roads are not yet surfaced; these are low-volume roads that provide access to the rural areas where most of the country’s population is found, though in low density. In spite of the rapid improvement in the quality of the national road network in recent years, much remains to be done. In the early 1970s and early 1980s the rural roads unit was introduced in the Ministry of Works Transport and Communications, which was charged with the responsibility of design and construction of low-volume roads around the country in a bid to integrate the country’s road network. This unit was later disbanded in the 1990s, and all roads are improved through the conventional procurement system using private contractors. For these roads the justification of a surfacing project based on conventional economic return methods does not apply, and worse still, the road improvements have to compete with other amenities for the same limited resources. Three ministries in Botswana are responsible for roads: Ministry of Works Transport and Communications, Ministry of Local Government, and Ministry of Trade, Industry, Wildlife and Tourism. These ministries have different responsibilities for different roads within the country, and earth, sand, and gravel roads are found under the jurisdiction of each of the ministries. The major drawbacks concerning low-volume roads in Botswana are inadequate maintenance, poor road construction materials, and the environmental impacts of the roads. Since the budget and resources are inadequate to keep these roads in good condition, it would be prudent to find technological means that would improve the locally available road construction materials so as to minimize their effects on the environment and vehicle operating costs.


2021 ◽  
Author(s):  
OYEM EMMANUEL UBIDO ◽  
Igwe Ogbonnaya ◽  
Bernadette Uche Ukah

Abstract Investigation into the cause of road failure has been carried out along a 60km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12-61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1-52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2-35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17 – 43.9%, maximum dry density ranges from 1.51 -1.74g /cm3, specific gravity ranges from 2.52-2.64 and CBR between 3-12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20-138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20m – 240 m along the profile to a depth of 7.60m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m –120 m along the profile to a depth of 15m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


Author(s):  
V.D. Klyuev ◽  
Yu.A. Biryukov ◽  
V.V. Panayetova

The article deals with the problem of using resource-saving technologies for processing construction materials waste to ensure environmental safety and reuse of materials during the dismantling (demolition) of buildings. Justification is given for the development and adaptation of the theory of using resource-saving technologies in the organization of dismantling (demolition) of buildings.


Sign in / Sign up

Export Citation Format

Share Document