USING THE METHODOLOGY OF "GREEN" CONSTRUCTION FOR RATING EVALUATION OF ROADS

Author(s):  
Konstantin Pugin

The use of new technologies and raw materials, including man-made materials, in the production of con-struction and road materials increases the risks of forming a negative technogenic load on environmental objects when used in road construction. This is of particular relevance due to the fact that the road network has a long extension in the settlements and as a result has a negative impact on the person. A new methodolo-gy for "green" construction, which is currently being effectively used in a number of developed European countries, can give a comprehensive assessment of the emergence of risks. On the basis of analytical and la-boratory studies it is shown that the methodology of "green" construction used for the evaluation of residen-tial and industrial buildings can not be applied to the evaluation of road construction objects. When as-sessing the building materials used in road construction, the change in their physicochemical condition dur-ing long-term operation in the elements of road structures is not taken into account. It is shown that the emis-sion of environmentally hazardous chemical compounds that make up construction materials increases with the cyclicity of the pH of the medium of their placement, the discontinuity of the surface. It was proposed to include such provisions as "protection from the aquatic environment", "stable pH values of the external envi-ronment" for the formation of a rating system for assessing the "green" construction of motor roads in order to ensure environmental safety.

2015 ◽  
Vol 5 (4) ◽  
pp. 94-99 ◽  
Author(s):  
Anna Yur'evna ZHIGULINA ◽  
Natalya Genrikhovna CHUMACHENKO

The article is devoted to problems of creation of comfortable microclimate. Identifi es sources of pollution, completed their evaluation. Special att ention is paid to the selection of environmentally friendly building materials. In the production of building materials where toxic components can be industrial waste, replacing natural raw materials and chemical additives regulating the properties. In the operation of many building materials, especially those based on polymers, it is necessary to control the release of toxic substances resulting from degradation. For the assessment of comfort and environmental safety of housing is offered to create «Passports of residential buildings», which should be provided with information about construction materials used to evaluate this parameter, environmental home safety, including chemical safety as its component.


2020 ◽  
Vol 164 ◽  
pp. 07006 ◽  
Author(s):  
Elena Smirnova ◽  
Yuliya Larionova

The article provides an analysis of construction influence on the environment, the environment-forming function of the construction activity has also been studied. The assessment of environmental factors has been made on the basis of interdisciplinary approach. The conducted assessment of state and dynamics of eco-economic interaction between the construction activity and the environment, the basis of sustenance of the urban and agricultural economy in Russia, has demonstrated the investment potential of production of the construction materials. However, the raw materials are mined by the open pit; the lands of agricultural purpose get requisitioned for the pits. All this shows an ecological inefficiency of the construction industry growing from year to year. A direct demolition of natural eco-systems in the local areas contradicts the attractiveness of ecological construction in the framework of movement to the sustainable development of the country. The system “construction – vital activities environment” has been reviewed as an eco-economic equilibrium, as a criterion of the authentic system-level development. It is necessary to increase the quality of ecological monitoring. The performed analytical helps to come to a conclusion that notwithstanding the developed basic provisions of institutional policy a negative impact of construction on the environment impedes the development of ecologically-oriented investment and construction activity and sustainable development of the country.


2021 ◽  
Vol 13 (17) ◽  
pp. 9938
Author(s):  
Nuno Cristelo ◽  
Fernando Castro ◽  
Tiago Miranda ◽  
Zahra Abdollahnejad ◽  
Ana Fernández-Jiménez

The sustainability of resources is becoming a worldwide concern, including construction and building materials, especially with the alarming increase rate in global population. Alternative solutions to ordinary Portland cement (OPC) as a concrete binder are being studied, namely the so-called alkali-activated cements (AAC). These are less harmful to the environment, as lower CO2 emissions are associated with their fabrication, and their mechanical properties can be similar to those of the OPC. The aim of developing alkali-activated materials (AAM) is the maximization of the incorporated recycled materials, which minimises the CO2 emissions and cost, while also achieving acceptable properties for construction applications. Therefore, various efforts are being made to produce sustainable construction materials based on different sources and raw materials. Recently, significant attention has been raised from the by-products of the steelmaking industry, mostly due to their widespread availability. In this paper, ladle slag (LS) resulting from steelmaking operations was studied as the main precursor to produce AAC, combined with phosphating bath sludge—or phosphate sludge (PS)—and aluminium anodising sludge (AS), two by-products of the surface treatment of metals, in replacement rates of 10 and 20 wt.%. The precursors were activated by two different alkaline solutions: a combination of commercial sodium hydroxide and sodium silicate (COM), and a disposed solution from the cleaning of aluminium extrusion steel dies (CLE). This study assesses the influence of these by-products from the steelmaking industry (PS, AS and CLE) on the performance of the alkali-activated LS, and specifically on its fresh and hardened state properties, including rheology, heat of hydration, compressive strength and microstructure and mineralogy (X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infra-red. The results showed that the CLE had no negative impact on the strength of the AAM incorporating PS or/and AS, while increasing the strength of the LS alone by 2×. Additionally, regardless of the precursor combination, the use of a commercial activator (COM) led to more fluid pastes, compared with the CLE.


2021 ◽  
Vol 265 ◽  
pp. 04007
Author(s):  
N. G. Mitrofanov ◽  
A. Yu. Sushilova

The following paper presents some results of long-term research on the urgent problem of recycling waste products and their use in road construction. The studied new materials and technologies are justified by the developments of Tyumen Industrial University. The aim of this work is to prove the technique, checking the ecological safety of the road materials with the use of waste products. Research techniques and test subjects are quantitative chemical analysis and biological testing of road material samples with waste additives obtained during drilling and oil production. Along with the standard procedures for analyzing the contamination and toxicity of water extracts, the authors have proposed and tested the evaluation of repeated and long-term extractions, imitating the possible environmental impact of waste products. The obtained results showed the environmental safety of the road-building materials based on wastes.


2014 ◽  
Vol 1000 ◽  
pp. 294-297
Author(s):  
Kristýna Urbánková ◽  
Ilona Kukletová ◽  
Hana Štegnerová

Economic and environmental dealing with waste requires development of new technologies for their usage. An incorporation of industrial waste material in construction materials and products is one of the options how to reduce raw materials cost and save natural sources of raw materials. In case of wastes utilization as a component of building materials, it is necessary to know their technological and ecological suitability. This study deals with some ecotoxicological and analytical methods for evaluation of ecological availability of composites with defined content of waste. These methods describe impact of the substances on the environment and living organisms.


2016 ◽  
Vol 4 ◽  
pp. 21-29
Author(s):  
Ilin A.P. ◽  
Kochetkov S.P. ◽  
Bryl S.V. ◽  
Rukhlin G.V.

In the article the problems and prospects of using of secondary products of processing of natural phosphates for obtaining building materials. This technology for production of complex fertilizers is carried out on a Chemical enterprises in Russia: Veliky Novgorod, Dorogouge and Kirovo-Chepetsk. It is noted that from 1 ton of P2O5 of apatite it is produced of CaCO3 about 80 kg. Total output of manmade chalk if you use apatite concentrate represented 896 thousand ton and does not solve the problem of the shortfall of cement in Russia technogenic raw materials, in addition, all obtained in this process, liquid wastes and solid by-products are utilized within these companies without reference to the construction industry. To use the maximum amount of phosphogypsum waste produced by the best Perera-motivate on the spot in sulphuric acid, the who-rotated in the manufacturing associated with obtaining cement, sinter for road construction or lime (depending on the needs of the market). According to classical method on 1 ton of 100% sulfuric acid and 1 ton port lancement spent 2.05 ton hosphogypsum (in terms of dry dihydrate).


Vestnik MGSU ◽  
2015 ◽  
pp. 73-87
Author(s):  
Konstantin Georgievich Pugin ◽  
Yakov Iosifovich Vaysman

Basing on life cycle analysis of building materials produced of waste products the authors defined the formation stages of environmental risks of adverse impacts on the environment. The studies have revealed that one of the main environmental risks is the occurrence of secondary emission of pollutants from building materials produced of waste products when used by the end-user, which is not taken into account by the existing regulatory documents defining the environmental safety of construction materials. The questions of prevention of the possible negative impact of the construction materials based on or with addition of production waste while their use on the environment and population as a result of a number of natural and anthropogenic factors, which can lead to negative ecological effects, which are difficult to forecast, are not regulated enough. In the present conditions of the absence of regulatory framework of their ecological safety the wide use of production waste for obtaining construction materials without account for the possible ecological risks may lead to technogenic burden exceeding the acceptable level.The authors defined the main ways to reduce the environmental risks when using the resource potential of waste for the production of building materials by reducing the emissions of these pollutants while reducing their permeability.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4705
Author(s):  
Ewa Kochańska ◽  
Rafał M. Łukasik ◽  
Maciej Dzikuć

The COVID-19 pandemic has set new challenges for the HoReCa industry. Lockdowns have coincided with and strongly impacted the industrial transformation processes that have been taking place for a decade. Among the most important HoReCa transition processes are those related to the rapid growth of the delivery-food market and ordering meals via internet platforms. The new delivery-food market requires not only the development of specific distribution channels, but also the introduction of appropriate, very specific food packaging. Food packaging and its functionality are defined by the administrative requirements and standards applicable to materials that have contact with food and principally through the prism of the ecological disaster caused by enormous amounts of plastic waste, mainly attributed to the food packaging. To meet environmental and administrative requirements, new technologies to produce food packaging materials are emerging, ensuring product functionality, low environmental impact, biodegradability, and potential for composting of the final product. However, predominantly, the obtained product should keep the nutritional value of food and protect it against changes in color or shape. Current social transformation has a significant impact on the food packaging sector, on one hand creating a new lifestyle for society all over the world, and on the other, a growing awareness of the negative impact of humans on the environment and increasing responsibility for the planet. The COVID-19 pandemic has highlighted the need to develop a circular economy based on the paradigm of shortening distribution channels, using local raw materials, limiting the consumption of raw materials, energy, water, and above all, minimizing waste production throughout the life cycle of products, all of which are in line with the idea of low-carbon development.


Author(s):  
Rijk Block ◽  
Barbara Kuit ◽  
Torsten Schröder ◽  
Patrick Teuffel

<p>The structural engineering community has a strong responsibility to contribute to a more efficient use of natural resources. Nowadays the construction industry is by far the most resource intense industry sector, approximately 40-50% of all primary raw materials are used, which raises the question about the architects and engineer’s accountability. In this context and as a result of the Paris Climate agreement the Dutch government defined the program “Nederland Circulair in 2050”, which states the ambition to use 50% less primary materials in 2030 and to have a full circular economy in 2050.</p><p>One possible approach to achieve these ambitious goals is the application of renewable, bio-based materials in the built environment and to replace traditional, typically cement-based, materials. Already in the past natural building materials, such as timber and bamboo have been used widely, but in recent years new materials came up and provide new opportunities to be used in the construction industry. The authors explored various alternatives, such as hemp and flax fibres, mycelium and lignin-based fibres for composite materials, which will be described with various experimental and realised case studies.</p>


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Grace Kurniawati ◽  
Lisa Oksri Nelfia ◽  
Ade Okvianti Irlan ◽  
Indrawati Sumeru

Construction is growing rapidly nowadays. Buildings, housing, industry/business centers and highways will require natural aggregates which are natural resources that cannot be renewed. Therefore, we need replacement materials able to replace these natural aggregate. The large amount of plastic waste in fields, based on existing data, causes environmental pollution through it can be reused and useful for building and road construction. Most of communities don’t even know the plastic waste processing technology that allow their use in the construction of house construction such as floors, walls, roofs, and hinges and also road construction with not heavy road loads. The purpose of this activity is to provide the knowledge to the people of RPTRA related to technology for the use of plastic waste for building materials and also road construction in the area in the RPTRA environment considering it is not a public road and hence, with not heavy vehicle. The method used is firstly observation and interview of several houses visited. Then activities about using different types of plastic waste as construction materials. Finally, evaluation of the progress of the project by conducting a survey to people who had met the criteria of being a member of the plastic waste program. The success of this program will be the people’s understanding and a significate growing of any highvalue plastic use as construction material. The benefit of this community service is to increase the knowledge and insight of the people of RPTRA, South Meruya, and West Jakarta City, related to environmentally friendly technologies such as plastic waste processing.


Sign in / Sign up

Export Citation Format

Share Document