scholarly journals Synthesis of carbon dots-assisted MgAl-LDH hollow microspheres with hierarchical structure for the effective removal of Congo red from wastewater

2021 ◽  
Vol 269 ◽  
pp. 02003
Author(s):  
Zhigang Jia ◽  
Cong Han ◽  
Rui Chang ◽  
Daqing Zhang

Hierarchical hollow Mg-Al layered double hydroxide microspheres (HHMs) are successfully prepared by hydrothermal treatment in the presence of carbon dots (CDs). Morphology and structure of the as-prepared samples are characterized using XRD, SEM, FT-IR, and TEM techniques. The growth process of HHMs has been investigated in detail, and Ostwald ripening mechanism is suggested for the hierarchical growth of HHMs. Adsorption isotherms and adsorption kinetics of HHMs for congo red (CR) are investigated. Langmuir and Temkin model are more fitted to the experimental data of CR isotherm adsorption. Adsorption kinetic data obeys the pseudo-second-order kinetic model. Moreover, thermodynamic parameters (ΔGo, ΔHo and ΔSo) show that the CR adsorption onto HHMs is an endothermic and spontaneous process. The as-prepared HHMs could be a potential adsorbent for wastewater treatment containing anion dyes.

2021 ◽  
Vol 6 (3) ◽  
pp. 209-217
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Alfan Wijaya ◽  
Aldes Lesbani

Modification of Cu/Cr layered double hydroxides (LDHs) has been conducted by intercalation using Keggin type polyoxometalate [a-SiW12O40]4- to form CuCr-[a-SiW12O40]. The materials were analyzed by XRD, FTIR, and surface area analyses. Furthermore, materials were used as selectivity adsorbents of cationic dyes such as malachite green, rhodamine-B and methylene blue. The malachite green is more selective than others from an aqueous solution. The adsorption of malachite green showed that the adsorption capacity of CuCr-[a-SiW12O40] was higher than pristine LDHs. The adsorption process was followed pseudo second order kinetic model and Langmuir isotherm adsorption. The Qmax value of CuCr-[a-SiW12O40] reached 55.322 mg/g at 323 K after 100 minutes adsorption time. Thermodynamic parameters such as ΔG, ΔH and ΔS confirm that the adsorption process was endothermic, spontaneous, and more favorable at high temperatures. The intercalated material was higher structural stability toward reusability adsorbent than pristine LDHs.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250019 ◽  
Author(s):  
RAJESH KUMAR ◽  
S. K. JAIN

This study was carried out to evaluate the environmental application of functionalized carbon nanotubes through the experimental removal of strontium (II) from water. The aim was to find the optimal condition for the removal of strontium from water under different conditions such as initial concentration of strontium, contact time and neutral pH. The functionalized multi wall carbon nanotubes (f-MWCNT) were characterized by FT-IR and scanning electron microscopy (SEM). The adsorption isotherms were correlated to Freundlich and Langmuir models and it was found that the adsorption data could be fitted better by Langmuir model than Freundlich one. The kinetic data shows that the adsorption describes well with the pseudo-second order kinetic model. Functionalized MWCNT can be used as good adsorbent for the removal of the strontium ions from polluted water according to results.


2011 ◽  
Vol 413 ◽  
pp. 148-153 ◽  
Author(s):  
Xue Na Hu ◽  
Ya Han ◽  
Jia Yan Li ◽  
Jun Yan Wu ◽  
Jian Rong Chen ◽  
...  

Thiol-functionalized MCM-48 (SH-MCM-48) was synthesized by co-condensation method, with co-templates of cetyltrimethylammonium bromide (CTAB) and nonionic poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) triblock copolymer (Pluronic P123). The resulting material was characterized by XRD and FT-IR spectrum. The potential of SH-MCM-48 for adsorption Zn (II) from aqueous solution was examined. Batch adsorption studies were carried out to investigate the effect of experimental parameters including pH, metal ions concentration and adsorption time. The maximum adsorption capacities of Zn (II) onto SH-MCM-48 were 30.12, 34.01 and 38.02 mg g-1 at the temperature of 303, 313 and 323K, respectively. The adsorption kinetics data were found to follow the pseudo-second-order kinetic model, and adsorption isotherms were fitted well with Langmuir and Freundlich models. Moreover, the adsorption thermodynamic parameters (△G0, △H0 and △S0) were measured, and indicated that the adsorption was an exothermic and spontaneous process.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3890
Author(s):  
Chenlu Jiao ◽  
Die Liu ◽  
Nana Wei ◽  
Jiannan Gao ◽  
Fan Fu ◽  
...  

Porous sustainable cellulose/gelatin/sepiolite gel beads were fabricated via an efficient ‘hydrophilic assembly–floating droplet’ two-step method to remove Congo red (CR) from wastewater. The beads comprised microcrystalline cellulose and gelatin, forming a dual network framework, and sepiolite, which acted as a functional component to reinforce the network. The as-prepared gel beads were characterized using FTIR, SEM, XRD, and TGA, with the results indicating a highly porous structure that was also thermally stable. A batch adsorption experiment for CR was performed and evaluated as a function of pH, sepiolite addition, contact time, temperature, and initial concentration. The kinetics and isotherm data obtained were in agreement with the pseudo-second-order kinetic model and the Langmuir isotherm, with a maximum monolayer capacity of 279.3 mg·g−1 for CR at 303 K. Moreover, thermodynamic analysis demonstrated the spontaneous and endothermic nature of the dye uptake. Importantly, even when subjected to five regeneration cycles, the gel beads retained 87% of their original adsorption value, suggesting their suitability as an efficient and reusable material for dye wastewater treatments.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaodong Li

Using straw and urea as raw materials, biochar (BC) and g-C3N4 were prepared by oxygen-free pyrolysis at 300°C and 550°C. BC/g-C3N4 was prepared by loading different amounts of g-C3N4 onto the surface of biochar and characterized by SEM and FT-IR. The adsorption effect on methylene blue (MB) was investigated from the aspects of dosage and pH. The studies of adsorption equilibrium isotherms and the kinetic and the thermodynamic parameters on the BC/g-C3N4 adsorbents are discussed. The results showed that BC/g-C3N4 0.16 g/L with a doping ratio of 1 : 3 was added to the MB solution with an initial concentration of 50 mg/L and pH=11. The adsorption rate and adsorption amount were 96.72% and 302.25 mg/g, respectively. The adsorption process included surface adsorption and intraparticle diffusion, which conformed to the pseudo-second-order kinetic model and Langmuir-Freundlich model. Thermodynamic parameters (ΔG0<0, ΔH0>0, and ΔS0>0) showed that the adsorption reaction is spontaneous, which positively correlated with temperature.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


Clay Minerals ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 31-44 ◽  
Author(s):  
G. A. Ikhtiyarova ◽  
A. S. Özcan ◽  
Ö. Gök ◽  
A. Özcan

AbstractIn this study, natural bentonite was modified with hexadecyltrimethylammonium (HDTMA) bromide to obtain organobentonite (HDTMA-bentonite). Bentonite and HDTMA-bentonite were then characterized using XRD, XRF, SEM, FT-IR, thermogravimetric (TG) analysis, elemental analysis and Brunauer-Emmett-Teller (BET) surface area techniques. The HDTMA+ cation was found to be located on the surface and enters the interlayer spaces of smectite according to the XRD and SEM results. FT-IR spectra indicated the existence of HDTMA functional groups on the bentonite surface. The BET surface area significantly decreased after the modification due to the coverage of the pores of natural bentonite. After the characterization, the adsorption of a textile dye, Reactive Blue 19 (RB19), onto bentonite and HDTMA-bentonite was investigated. The maximum adsorption capacity of HDTMA-bentonite for RB19 was 502 mg g-1 at 20°C. The adsorption process followed a pseudo-second-order kinetic model and it was exothermic and physical in nature.


2012 ◽  
Vol 506 ◽  
pp. 405-408 ◽  
Author(s):  
T. Rubcumintara ◽  
A. Aksornpan ◽  
W. Jonglertjunya ◽  
W. Koo-Amornpattana ◽  
P. Tasaso

The recovery of gold from chloride solutions using bioadsorbent synthesized from waste rambutan peel was studied. The initial gold concentration 25-900 mg/L, solution pH 1-4, temperature 25-60 °C and the amount of adsorbent 1-25 mg were found to affect the efficiency for gold recovery as well as loading capacity. The 99.8 % gold recovery was accomplished in 1 h with loading capacity of 100 mg Au/g adsorbent at the following conditions: adsorbent 25 mg, initial gold concentration 100 mg/L, pH 2 and temperature 60 °C. The decrease of adsorbent from 25 to 1 mg resulted in the highest loading capacity of 2530 mg Au/g adsorbent and 100 % gold recovery within 100 h. The adsorption isotherm as well as mechanism were also elucidated. The Langmuir isotherm and the pseudo second-order kinetic model were fitted well with the experimental results. The activation energy of reaction was calculated to be 31.07 kJ/mol. The mechanism of adsorption is clarified to be the oxidation of hydroxyl groups and reduction of trivalent gold ions to metallic gold on the adsorbent surface which were supported by FT-IR, XRF and SEM.


Sign in / Sign up

Export Citation Format

Share Document