scholarly journals Efficient Congo Red Removal Using Porous Cellulose/Gelatin/Sepiolite Gel Beads: Assembly, Characterization, and Adsorption Mechanism

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3890
Author(s):  
Chenlu Jiao ◽  
Die Liu ◽  
Nana Wei ◽  
Jiannan Gao ◽  
Fan Fu ◽  
...  

Porous sustainable cellulose/gelatin/sepiolite gel beads were fabricated via an efficient ‘hydrophilic assembly–floating droplet’ two-step method to remove Congo red (CR) from wastewater. The beads comprised microcrystalline cellulose and gelatin, forming a dual network framework, and sepiolite, which acted as a functional component to reinforce the network. The as-prepared gel beads were characterized using FTIR, SEM, XRD, and TGA, with the results indicating a highly porous structure that was also thermally stable. A batch adsorption experiment for CR was performed and evaluated as a function of pH, sepiolite addition, contact time, temperature, and initial concentration. The kinetics and isotherm data obtained were in agreement with the pseudo-second-order kinetic model and the Langmuir isotherm, with a maximum monolayer capacity of 279.3 mg·g−1 for CR at 303 K. Moreover, thermodynamic analysis demonstrated the spontaneous and endothermic nature of the dye uptake. Importantly, even when subjected to five regeneration cycles, the gel beads retained 87% of their original adsorption value, suggesting their suitability as an efficient and reusable material for dye wastewater treatments.

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1385 ◽  
Author(s):  
Liang Qiu ◽  
Guilaine Jaria ◽  
María Victoria Gil ◽  
Jundong Feng ◽  
Yaodong Dai ◽  
...  

In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs (magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption capacities of 77 and 24 mg g−1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals, namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively. This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of SMX from wastewater.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2011 ◽  
Vol 413 ◽  
pp. 148-153 ◽  
Author(s):  
Xue Na Hu ◽  
Ya Han ◽  
Jia Yan Li ◽  
Jun Yan Wu ◽  
Jian Rong Chen ◽  
...  

Thiol-functionalized MCM-48 (SH-MCM-48) was synthesized by co-condensation method, with co-templates of cetyltrimethylammonium bromide (CTAB) and nonionic poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) triblock copolymer (Pluronic P123). The resulting material was characterized by XRD and FT-IR spectrum. The potential of SH-MCM-48 for adsorption Zn (II) from aqueous solution was examined. Batch adsorption studies were carried out to investigate the effect of experimental parameters including pH, metal ions concentration and adsorption time. The maximum adsorption capacities of Zn (II) onto SH-MCM-48 were 30.12, 34.01 and 38.02 mg g-1 at the temperature of 303, 313 and 323K, respectively. The adsorption kinetics data were found to follow the pseudo-second-order kinetic model, and adsorption isotherms were fitted well with Langmuir and Freundlich models. Moreover, the adsorption thermodynamic parameters (△G0, △H0 and △S0) were measured, and indicated that the adsorption was an exothermic and spontaneous process.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2020 ◽  
Vol 81 (6) ◽  
pp. 1114-1129 ◽  
Author(s):  
Jun Wang ◽  
Qinglong Xie ◽  
Ao Li ◽  
Xuejun Liu ◽  
Fengwen Yu ◽  
...  

Abstract In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2014 ◽  
Vol 955-959 ◽  
pp. 2440-2443 ◽  
Author(s):  
Jing Li ◽  
Dong Mei Jia ◽  
Chang Hai Li ◽  
Bao Qing Yu

The ammonia modified cotton stalks (CS) were utilized to adsorb the Ni2+and Cu2+ions from wastewaters, and the effect parameters (i.e. pH, contact time, adsorbent dose, and temperature) were also investigated by batch adsorption experiments. The maximum uptake was attained, i.e., 99.4% and 98.8%, respectively, for nickel and copper ions, under the optimum conditions (adsorbent dose: 10 g/L; pH: 6.0 (Ni2+), 5.0 (Cu2+); t: 75min; T: 20 °C) when the initial concentration of heavy metal ions was 20 mg/L. The adsorption process of nickel and copper ions on ammonia modified CS was well described by the pseudo-second-order kinetic model.


2016 ◽  
Vol 16 (4) ◽  
pp. 992-1001 ◽  
Author(s):  
Jasmina Nikić ◽  
Jasmina Agbaba ◽  
Malcolm Watson ◽  
Snežana Maletić ◽  
Jelena Molnar Jazić ◽  
...  

A series of Fe–Mn binary oxides with different Fe:Mn ratios (1:1, 3:1, 6:1, 9:1) were synthesized to investigate the optimal Fe:Mn ratio for the removal of As(III) and As(V). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherms. Adsorption kinetics were well described by the pseudo-second-order kinetic model for both As(III) and As(V). The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherms. The maximum As(V) sorption capacity was observed at an Fe:Mn ratio of 6:1 (65.0 mg/g), whereas maximum As(III) uptake was at Fe:Mn ratio 3:1 (46.9 mg/g). Arsenic levels in real water samples were reduced from 37 μg/l to below the EU Water Framework Directive limit (10 μg/L) after treatment with Fe–Mn adsorbents.


2013 ◽  
Vol 28 (1-2) ◽  
pp. 113-122
Author(s):  
Kedar Nath Ghimire ◽  
Deepak Wagle ◽  
Suman Lal Shrestha

An effective chemically modified adsorbent based on sugarcane waste has been prepared by treating with concentrated sulphuric acid in 2:1weight/volume ratio. Thus prepared adsorbent has been found to be effective in the adsorption of chromium from aqueous medium. The efficacy of the adsorbent in the removal of chromium was evaluated by batch adsorption method. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was found to be 195 mg/g at their optimal pH 1 at which unmodified bagasse has only 58 mg/g. The characterization of adsorbent was done by determining surface area and Boehm’s titration method. Freundlich isotherm and pseudo-second order kinetic model gave better explanation of the adsorption process.


2020 ◽  
Vol 20 (5) ◽  
pp. 2878-2886
Author(s):  
Jia Liu ◽  
Guo-Dong Su ◽  
Zhou Wang

Magnetic Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles were synthesized by the absolute alcohol combustion method. The morphology, microstructure, and composition of as-prepared Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles were characterized by several techniques: the vibrating sample magnetometer (VSM), the scanning electron microscopy (SEM), the X-ray diffraction (XRD), and the energy dispersive spectroscopy (EDS). The experimental results showed that the calcination temperature and the solvent volume were the crucial factors for the synthesis of the magnetic Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles. The adsorption performance of Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles for congo red (CR) was investigated. The model of pseudo-second-order kinetic was optimal matching for obtaining the parameters of adsorption CR in the initial range of 100–400 mg/L−1, while, the isotherm data of CR onto Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles could conform to the Temkin model owing to the values of the square deviations, which revealed that the adsorption of CR onto Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles at room temperature was the monolayer and multilayer adsorption mechanism.


Sign in / Sign up

Export Citation Format

Share Document