scholarly journals Automated unit for magnetic pulse processing of strawberries

2021 ◽  
Vol 285 ◽  
pp. 07024
Author(s):  
Dmitriy Khort ◽  
Alexey Kutyrev ◽  
Rostislav Filippov

The article presents the developed automated unit for magnetic pulse processing of strawberries. To maintain the required magnetic induction value in the impact zone, the unit design provides for the possibility of changing the position of the working bodies in the vertical and horizontal planes in an automated mode. The unit includes a device for magnetic pulse treatment of plants, magnetic inductors, a control unit for the system of adaptation of working bodies and a program for controlling operating modes. As a result of field studies, it was found that in order to obtain the required value of magnetic induction in the processing zone at a pulse repetition frequency from 1 to 64 Hz and a magnetic induction of 0.3-15 MT, it is necessary to ensure a distance between the working organs and plants from 10 to 250 mm. The required design parameters of the unit that allow for magnetic pulse processing on strawberry plantings with a row spacing of 0.3-1.5 m are determined: the width of the gripper, adjustable 1.6-3.6 m, the tilt adjustment of the working bodies in the vertical direction from 0 to 90.

2019 ◽  
Vol 65 (No. 3) ◽  
pp. 85-90
Author(s):  
Alexei Sibirev ◽  
Alexandr Aksenov ◽  
Alexei Dorokhov ◽  
Andrei Ponomarev

The quality of the separation of root crops, onions and potatoes is known to primarily depend on the cultivation conditions. As a rule, these cultures are cultivated in mechanically light soils in order to improve the quality of separation, as well as to reduce the traction resistance of the harvester when extracting the root crops from the soil. When harvesting the root crops, it is very important to maintain the soil in a loose (light) state to improve the quality of the separation. Due to the fact that in digging up the root crops, there is a joint flow of strong soil lumps to the separating working bodies, which are difficult to separate on the slit working bodies of the harvester, which increases damage to the root crops when interacting with the soil lumps, the commercial quality of the products is subsequently deteriorated. The existing potato harvesters damage the commercial products as a result of the interaction of the potato tubers with each other, with the working bodies and with the soil lumps. However, the greatest percentage of damage to potato tubers occurs as a result of their interaction with the working bodies of the harvester. Field studies were conducted to determine the places of the greatest impact of the individual working bodies of the potato harvesters and to carry out subsequent actions for the elimination of these negative impacts in the design of the harvesters. This article presents a methodology for conducting field studies on the assessment of the impact of the working bodies on the scale of damage to potato tubers when harvesting. The results of the comparative studies of the impact of the working bodies of modern potato harvesters, which damage the potato tubers as a result of the interaction with them are presented. We have determined that the greatest scale of impact on the potato tubers during the mechanised harvesting is observed as the transition from the main elevator to the secondary separation devices takes place, irrespective of the design and technological scheme of the harvester, and reaches its minimum value from 6.5 N for the Bolko harvester to 21 N for the AVR-Spirit-6200 harvester.


2021 ◽  
pp. 107754632110224
Author(s):  
Ehsan Davoodi ◽  
Pedram Safarpour ◽  
Mahdi Pourgholi ◽  
Mostafa Khazaee

One of the most important issues for the helicopter pilots is the health risk due to the vibration transmitted to the pilot through the seat. In this article, a seat suspension based on negative stiffness structure is presented to decrease the vibration transmitted to the pilot in both vertical and lateral directions without losing the loading capacity of the system. Here, an integrated model of the suspension–cushion–occupant is derived. To generalize the results of system analysis and its usability in other applications, the impact of parameters on the system performance is studied in dimensionless form. Despite coupling between the lateral and vertical directions, the design parameters of the seat suspension are determined in such a way that the system responds simultaneously as a negative stiffness structure in both directions. The system efficiency in vibration damping is assessed by seat effective amplitude transmissibility and transmissibility criteria. In addition, the whole body vibration and impact of the vibration on the pilot body are evaluated using ISO-2631. To verify the system efficiency in more realistic situation, the simulations are performed using the measured vibration data of a Bell-412 helicopter. The results indicate that the vibration amplitude is decreased by about 45% and 48% in the lateral and vertical directions, respectively. The frequency spectrum comparison of the seat and cabin floor reveals 80% reduction of amplitude in fundamental frequency in the vertical direction, whereas it is about 93% in the lateral direction. Furthermore, the level of pilot’s comfort and perception is improved that demonstrates better riding quality and reduced vibration environment.


This article describes the structure of a device to prevent the formation of ice on the cables of power lines using the impulse shock method with the lateral type of fastening. The actuator of the device is a magnetic pulse electromechanical energy converter. It can ensure that the parameters of the impact match the calculated values in a wide range of times and forces. This advantage determined the choice in favor of this type of actuators. The basic functions of the device are described herein. Based on this, the functional blocks are highlighted and their description is given. The influence of various design parameters of device parts on its performance is described. We also formulated requirements for structural elements. As a result, a reasonable choice was made when designing the device. A laboratory unit was developed to prevent the formation of ice using a scaled-down model of a power transmission line cable. A system for measuring vibrations at several points of a cable is described. The results of an experimental study of wire vibrations are presented. The correspondence of the calculated and experimental values of the cable deviation is shown, which indirectly confirms the correspondence of the developed device’s parameters to the calculated values.


2020 ◽  
Vol 11 (4) ◽  
pp. 81-87
Author(s):  
I. I. Chvartatskiy ◽  
◽  

The purpose of research is to determine the optimal design parameters of the hinged connection of the sectional screw working body, as well as to determine the impact of these parameters on the performance of this mechanism. The object of research is the processes of transportation of bulk materials along curvilinear routes by flexible articulated screw conveyors. The subject of the research is hinged-section screw working bodies and their parameters. The method of calculation of hinged connection of screw sectional working body is offered in the work. Calculations and analysis of changes in the efficiency of the hinge mechanism depending on its basic design parameters, such as the ratio of the radii of the ball and the cylindrical sleeve at the point of contact, the angle of deviation of the hinge axes, the angle of the conical surface of the hole. Graphic dependences are constructed on the basis of theoretical researches. Results: The optimal design parameters of this structure are established, and the influence of these parameters on operational characteristics is determined.


Author(s):  
Igor G. Smirnov ◽  
Dmitriy O. Khort ◽  
Rostislav A. Filippov ◽  
Alexey I. Kutyrev ◽  
Anatoly A. Artiushin

Introduction. The current level of agricultural production, including horticulture, is determined by intelligent machine technologies and new generation technical means with modern information and instrument support. The implementation of digital intelligent agricultural technologies in industrial gardening requires a fundamental change in the paradigm of technical support, based on the development and application of new automatic and unmanned machines, equipment and software for managing work processes of machines, navigating technical means, controlling the implementation of technological operations, monitoring the yield of agricultural crops, analyzing diseases and pests on plants and other technological functions. Materials and Methods. 3D model is visualized in the computer-aided design “KOMPAS-3D” through using the methods of mathematical modeling, theoretical mechanics and optimal design. A prototype of an automated unit for magnetic pulse processing of plants is made. The program code for calculating the required movement of the actuator rod is developed in the Sublime Text editor. C++programming language was used. The functionality of the computer program is related to the capabilities of controllers STM32, Arduino Mega/ Uno/Nano. Nextion 2.4 (the TFT screen 320x240) for the graphical output and interaction was used. Results. An automated unit with the algorithm of the drive control system of working bodies were developed during the technological operation of magnetic pulse processing of plants, taking into account the agro-technological parameters of garden plantations. A computer program with both automat and remote control was designed for driving the working bodies. Conclusions. The unit allows introducing a new environmentally safe technological method of stimulating vital and growth processes of fruit crops. This device provides the most efficient operation through automatic adjustment to various agro-technological parameters of plantings, providing the required value of magnetic induction in the working area on plant objects in the field. Keywords: magnetic pulse processing, control system, automated unit, irradiation of plants, gardening, low-frequency magnetic field For citation: Smirnov I. G., Khort D. O., Filippov R. A., Kutyrev A. I., Artiushin A. A. Automated Unit for Magnetic-Pulse Processing of Plants in Horticulture. Vestnik Mordovskogo universiteta = Mordovia University Bulletin. 2018; 28(4):624–642. DOI: https://doi.org/10.15507/0236-2910.028.201804.624-642


Biochar ◽  
2021 ◽  
Author(s):  
Ngitheni Winnie-Kate Nyoka ◽  
Ozekeke Ogbeide ◽  
Patricks Voua Otomo

AbstractTerrestrial and aquatic ecosystems are increasingly threatened by pesticide pollution resulting from extensive use of pesticides, and due to the lack of regulatory measures in the developing world, there is a need for affordable means to lessen environmental effects. This study aimed to investigate the impact of biochar amendment on the toxicity of imidacloprid to life-cycle parameters and biomarker responses of the earthworm Eisenia fetida. E. fetida was exposed to 10% biochar-amended and non-amended OECD artificial soils spiked with 0, 0.75, 1.5, 2.25 and 3 mg imidacloprid/kg for 28 days. An LC50 of 2.7 mg/kg was only computed in the non-amended soil but not in the biochar-amended soil due to insignificant mortality. The EC50 calculated in the non-amended soil (0.92 mg/kg) for reproduction (fertility) was lower than the one computed in the biochar amended (0.98 mg/kg), indicating a decrease in toxicity in the biochar-amended substrate. Significant weight loss was observed at the two highest imidacloprid treatments in the non-amended soil and only at the highest treatment in the biochar-amended substrate, further highlighting the beneficial effects of biochar. Catalase activity decreased significantly at the two highest concentrations of non-amended soil. Yet, in the amended soil, the activity remained high, especially in the highest concentration, where it was significantly higher than the controls. This indicated more severe oxidative stress in the absence of biochar. In all non-amended treatments, there was a significant acetylcholinesterase inhibition, while lower inhibition percentages were observed in the biochar-amended soil. In most endpoints, the addition of biochar alleviated the toxic effects of imidacloprid, which shows that biochar has the potential to be useful in soil remediation. However, there is still a need for field studies to identify the most effective application rate of biochar for land application.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Md Musabbir Adnan ◽  
Sagarvarma Sayyaparaju ◽  
Samuel D. Brown ◽  
Mst Shamim Ara Shawkat ◽  
Catherine D. Schuman ◽  
...  

Spiking neural networks (SNN) offer a power efficient, biologically plausible learning paradigm by encoding information into spikes. The discovery of the memristor has accelerated the progress of spiking neuromorphic systems, as the intrinsic plasticity of the device makes it an ideal candidate to mimic a biological synapse. Despite providing a nanoscale form factor, non-volatility, and low-power operation, memristors suffer from device-level non-idealities, which impact system-level performance. To address these issues, this article presents a memristive crossbar-based neuromorphic system using unsupervised learning with twin-memristor synapses, fully digital pulse width modulated spike-timing-dependent plasticity, and homeostasis neurons. The implemented single-layer SNN was applied to a pattern-recognition task of classifying handwritten-digits. The performance of the system was analyzed by varying design parameters such as number of training epochs, neurons, and capacitors. Furthermore, the impact of memristor device non-idealities, such as device-switching mismatch, aging, failure, and process variations, were investigated and the resilience of the proposed system was demonstrated.


2021 ◽  
pp. 154805182098653
Author(s):  
Jonathan C. Ziegert ◽  
David M. Mayer ◽  
Ronald F. Piccolo ◽  
Katrina A. Graham

This research explores the nature of collective leadership by examining the boundary conditions of how and when it relates to unit functioning. Building from a contingency perspective that considers the impact of contextual factors, we propose that collective charismatic leadership will be associated with lowered unit conflict, and this relationship will be strengthened by the contingency elements of individual charismatic leadership, task complexity, and social inclusion. Furthermore, we propose that the interactions of collective charismatic leadership with these contextual factors will relate to performance and satisfaction through conflict. We examine our hypotheses across two unit-level field studies, and the results illustrated that high levels of these contextual factors enhanced the negative relationship between collective charismatic leadership and conflict, which generally mediated the relationships between these interactive effects and performance and satisfaction. The results also highlight the detrimental aspects of collective leadership and how it can relate to reduced unit functioning when it is not aligned with an appropriate context. Overall, these findings begin to provide a more complete picture of collective leadership from a contingency perspective through a greater understanding of when and how it is related to unit functioning.


Author(s):  
Kiona Hagen Niehaus ◽  
Rebecca Fiebrink

This paper describes the process of developing a software tool for digital artistic exploration of 3D human figures. Previously available software for modeling mesh-based 3D human figures restricts user output based on normative assumptions about the form that a body might take, particularly in terms of gender, race, and disability status, which are reinforced by ubiquitous use of range-limited sliders mapped to singular high-level design parameters. CreatorCustom, the software prototype created during this research, is designed to foreground an exploratory approach to modeling 3D human bodies, treating the digital body as a sculptural landscape rather than a presupposed form for rote technical representation. Building on prior research into serendipity in Human-Computer Interaction and 3D modeling systems for users at various levels of proficiency, among other areas, this research comprises two qualitative studies and investigation of the impact on the first author's artistic practice. Study 1 uses interviews and practice sessions to explore the practices of six queer artists working with the body and the language, materials, and actions they use in their practice; these then informed the design of the software tool. Study 2 investigates the usability, creativity support, and bodily implications of the software when used by thirteen artists in a workshop. These studies reveal the importance of exploration and unexpectedness in artistic practice, and a desire for experimental digital approaches to the human form.


Sign in / Sign up

Export Citation Format

Share Document