scholarly journals Cold spray deposition of thermoplastic powder for road marking

2019 ◽  
Vol 221 ◽  
pp. 01006 ◽  
Author(s):  
Tatyana Brusentseva ◽  
Vladislav Shikalov ◽  
Vasiliy Fomin

The work is devoted to the deposition of polymer powder materials by cold spray method. Preliminary experimental results show that although an increase in the working air temperature leads to a noticeable increase in the deposition efficiency of thermoplastic (up to 0.05), it still remains low for cold spray. In the future, the proposed method for applying road marking will allow to obtain a coating with high wear resistance, increased service life, which can be used in various climatic zones in the temperature range from -40 °C to +40 °C, which will allow replacing water and solvent based paints with least service life.

Author(s):  
Tatyana A. Brusentseva ◽  
◽  
Vladislav S. Shikalov ◽  
Sergei M. Lavruk ◽  
Vasily M. Fomin

The work is devoted to the deposition of composite powder materials by cold spray method. As a spraying material, a thermoplastic compound «WAY» for marking the roadway was used. An asphalt concrete was used as a substrate. As a result of experimental studies, the dependence of the deposition efficiency on the stagnation temperature of the working air in the ejector nozzle was obtained. The ANSYS Fluent package was used for evaluative modeling of the cold spraying process. Gas flow patterns were obtained in the computational domain without particles and taking into account the interaction of the flow with particles. The trajectory of the particles was calculated for various spraying parameters


2006 ◽  
Vol 15 (3) ◽  
pp. 364-371 ◽  
Author(s):  
S.V. Klinkov ◽  
V.F. Kosarev

2007 ◽  
Vol 534-536 ◽  
pp. 441-444 ◽  
Author(s):  
Hyung Jun Kim ◽  
D.H. Jung ◽  
J.H. Jang ◽  
Chang Hee Lee

Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with in-situ powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.


MRS Advances ◽  
2019 ◽  
Vol 4 (55-56) ◽  
pp. 2989-2995
Author(s):  
Xin Chu ◽  
Hanqing Che ◽  
Stephen Yue

ABSTRACTMixing metal powders in cold spray is of significant interest not only because it is a straightforward method to produce novel composites, but also it has been observed to generate beneficial effects, e.g. improved deposition efficiency (DE). However, the mechanisms behind DE improvements are still not clear fundamentally. In this paper, two examples of mixing metal powders effects in cold spray are introduced: 1) the first example focuses on the effects of different particle/substrate interactions which occurred during cold spray of SS/Fe mixed powders; 2) the second example presents the DE-improving effect of depositing mixed metal powders onto polymers. Various mechanisms associated with the cold spray deposition characteristics of mixed metal powders are discussed in this paper.


Author(s):  
F. Delloro ◽  
A. Chebbi ◽  
H. Perrin ◽  
G. Ezo’o ◽  
A. Bastien ◽  
...  

Abstract Unlike their metal counterparts; composite structures do not readily conduct away the electrical currents generated by lightning strikes. Cost reduction and expected production growth of the next middle range airplanes require automated manufacturing process of polymer components. The development of an automated technology to metallize polymer based composite for lightning strike protection is the aim of the CO3 project (EU Grant agreement: ID831979). In this study; thermal and electrical conductivities of composites were achieved by cold spray deposition of Cu or Al coatings. Critical points to be addressed were substrate erosion during cold spray; lack of polymer-metal adhesion and poor deposition efficiency. Several strategies were tested: i) a thin polymer film was cocured at the substrate surface before cold spraying; to enable implantation of metallic particles in the film; helping coating build-up and protecting the fibers of the composite. ii) Cold spraying a mix of metal and polymer powders to improve coating adhesion and prevent fiber damage. iii) Supercritical Nitrogen Deposition technology; prior to cold spray; to mechanically anchor metallic particles into the polymer. Subsequent cold spraying of purely metallic coatings was more efficient and showed better adhesion. All coatings were tested in terms of adhesion strength and electrical conductivity.


2021 ◽  
Vol 405 ◽  
pp. 126676
Author(s):  
Xinliang Xie ◽  
Zhanqiu Tan ◽  
Chaoyue Chen ◽  
Yingchun Xie ◽  
Hongjian Wu ◽  
...  

2018 ◽  
Vol 941 ◽  
pp. 1639-1644
Author(s):  
Xin Chu ◽  
Phuong Vo ◽  
Stephen Yue

The splat test is usually generated by low feed rate cold spraying of particles onto an as-polished substrate and it can be considered as a monolayer coating deposition. In this study, in order to investigate cold spray deposition mechanisms, Fe splats were sprayed onto the cold-sprayed single component 316L, Fe, and a composite 90Fe coatings. Results showed that although there is only 3.6 vol.% of 316L in the composite 90Fe coating, Fe splats exhibit a much better deposition behavior onto the 90Fe as compared with the single component Fe coating. To explain this observation, Fe splat samples were characterized using the scanning electron microscope (SEM), optical profilometry, splat adhesion tests, and splat nanoindentation. Finally, a preliminary explanation towards the Fe splat deposition behavior onto the composite coating was drawn.


2021 ◽  
Author(s):  
D. Poirier ◽  
Y. Thomas ◽  
B. Guerreiro ◽  
M. Martin ◽  
M. Aghasibeig ◽  
...  

Abstract A novel powder modification method based on the simultaneous softening and agglomeration of steel powders via heat treatment in a rotary tube furnace has been investigated as a means to improve the cold sprayability of H13 tool steel powder. By adjusting starting powder size and shape as well as heat treatment conditions (maximum temperature, cooling rate, and atmosphere), cold spray of H13 powder went from virtually no deposition to the production of thick dense deposits with a deposition efficiency of 70%. Powder agglomeration, surface state, microstructure evolution, and softening are identified as key factors determining powder deposition efficiency and resulting deposit microstructure.


Sign in / Sign up

Export Citation Format

Share Document