scholarly journals Lidar Observations of Mountain Waves During Bora Episodes

2020 ◽  
Vol 237 ◽  
pp. 06007
Author(s):  
Longlong Wang ◽  
Marija Bervida ◽  
Samo Stanič ◽  
Klemen Bergant ◽  
William Eichinger ◽  
...  

Airflows over mountain barriers in the Alpine region may give rise to strong, gusty downslope winds, called Bora. Oscillations, caused by the flow over an orographic barrier, lead to formation of mountain waves. These waves can only rarely be observed visually and can, in general, not be reliably reproduced by numerical models. Using aerosols as tracers for airmass motion, mountain waves were experimentally observed during Bora outbreak in the Vipava valley, Slovenia, on 24-25 January 2019 by two lidar systems: a vertical scanning lidar positioned just below the peak of the lee side of the mountain range and a fixed direction lidar at valley floor, which were set up to retrieve two-dimensional structure of the airflow over the orographic barrier into the valley. Based on the lidar data, we determined the thickness of airmass layer exhibiting downslope motion, observed hydraulic jump phenomena that gave rise to mountain waves and characterized their properties.

2015 ◽  
Vol 144 (1) ◽  
pp. 77-98 ◽  
Author(s):  
Benedikt Ehard ◽  
Peggy Achtert ◽  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Jörg Gumbel ◽  
...  

Abstract The paper presents a feasible method to complement ground-based middle atmospheric Rayleigh lidar temperature observations with numerical simulations in the lower stratosphere and troposphere to study gravity waves. Validated mesoscale numerical simulations are utilized to complement the temperature below 30-km altitude. For this purpose, high-temporal-resolution output of the numerical results was interpolated on the position of the lidar in the lee of the Scandinavian mountain range. Two wintertime cases of orographically induced gravity waves are analyzed. Wave parameters are derived using a wavelet analysis of the combined dataset throughout the entire altitude range from the troposphere to the mesosphere. Although similar in the tropospheric forcings, both cases differ in vertical propagation. The combined dataset reveals stratospheric wave breaking for one case, whereas the mountain waves in the other case could propagate up to about 40-km altitude. The lidar observations reveal an interaction of the vertically propagating gravity waves with the stratopause, leading to a stratopause descent in both cases.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Author(s):  
A. Argento ◽  
R. A. Scott

Abstract A method is given by which the response of a rotating Timoshenko beam subjected to an accelerating fixed direction force can be determined. The beam model includes the gyroscopically induced displacement transverse to the direction of the load. The solution for pinned supports is set up in general form using multi-integral transforms and the inversion is expressed in terms of convolution integrals. These are numerically integrated for a uniformly distributed load having an exponentially varying velocity function. Results are presented for the displacement under the load’s center as a function of position. Comparisons are made between the responses to a constant velocity load and a load which accelerates up to the same velocity.


2021 ◽  
Author(s):  
Murat Zeybek ◽  
Lei Jiang ◽  
Hadrien Dumont

Abstract The radius of investigation (ROI) of pressure transient analyses has been traditionally assessed using analytical formulations with basic reservoir parameters for homogenous systems. Numerous studies aimed to improve ROI formulations to incorporate all reservoir and testing parameters such as gauge resolution and rate for more accurate ROI assessments. However, new generation wireline formation testers aim to improve deep transient tests with significant developments in gauge resolution and increasing rate. Challenges still remain in heterogeneous formations such as shaly sands and carbonate reservoirs. In this study, detailed conceptual high-resolution numerical models are set up, including comprehensive reservoir and measurement parameters, to investigate more realistic ROI assessments in layered heterogeneous systems without and with hydraulic communication. Several conceptual examples are presented in layered systems with permeability contrasts. In addition, deviation from infinite-acting radial flow (IAFR) and pressure propagation in highly heterogeneous layered systems are investigated to detect the presence of geological features, including closed boundary systems and the presence of a fault in the proximity of wellbore.


2018 ◽  
Vol 75 (8) ◽  
pp. 2721-2740 ◽  
Author(s):  
Christopher G. Kruse ◽  
Ronald B. Smith

AbstractMountain waves (MWs) are generated during episodic cross-barrier flow over broad-spectrum terrain. However, most MW drag parameterizations neglect transient, broad-spectrum dynamics. Here, the influences of these dynamics on both nondissipative and dissipative momentum deposition by MW events are quantified in a 2D, horizontally periodic idealized framework. The influences of the MW spectrum, vertical wind shear, and forcing duration are investigated. MW events are studied using three numerical models—the nonlinear, transient WRF Model; a linear, quasi-transient Fourier-ray model; and an optimally tuned Lindzen-type saturation parameterization—allowing quantification of total, nondissipative, and dissipative MW-induced decelerations, respectively. Additionally, a pseudomomentum diagnostic is used to estimate nondissipative decelerations within the WRF solutions. For broad-spectrum MWs, vertical dispersion controls spectrum evolution aloft. Short MWs propagate upward quickly and break first at the highest altitudes. Subsequently, the arrival of additional longer MWs allows breaking at lower altitudes because of their greater contribution to u variance. As a result, minimum breaking levels descend with time and event duration. In zero- and positive-shear environments, this descent is not smooth but proceeds downward in steps as a result of vertically recurring steepening levels. Nondissipative decelerations are nonnegligible and influence an MW’s approach to breaking, but breaking and dissipative decelerations quickly develop and dominate the subsequent evolution. Comparison of the three model solutions suggests that the conventional instant propagation and monochromatic parameterization assumptions lead to too much MW drag at too low an altitude.


2017 ◽  
Vol 145 (4) ◽  
pp. 1149-1159 ◽  
Author(s):  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Michael C. Pitts ◽  
Lamont R. Poole ◽  
Marion Maturilli

Abstract The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.


2008 ◽  
Vol 8 (5) ◽  
pp. 17939-17986 ◽  
Author(s):  
M. Schaap ◽  
A. Apituley ◽  
R. M. A. Timmermans ◽  
R. B. A. Koelemeijer ◽  
G. de Leeuw

Abstract. To acquire daily estimates of PM2.5 distributions based on satellite data one depends critically on an established relation between AOD and ground level PM2.5. In this study we aimed to experimentally establish the AOD-PM2.5 relationship for the Netherlands. For that purpose an experiment was set-up at the AERONET site Cabauw. The average PM2.5 concentration during this ten month study was 18 μg/m3, which confirms that the Netherlands are characterised by a high PM burden. A first inspection of the AERONET level 1.5 (L1.5) AOD and PM2.5 data at Cabauw showed a low correlation between the two properties. However, after screening for cloud contamination in the AERONET L1.5 data, the correlation improved substantially. When also constraining the dataset to data points acquired around noon, the correlation between AOD and PM2.5 amounted to R2=0.6 for situations with fair weather. This indicates that AOD data contain information about the temporal evolution of PM2.5. We had used LIDAR observations to detect residual cloud contamination in the AERONET L1.5 data. Comparison of our cloud-screed L1.5 with AERONET L2 data that became available near the end of the study showed favorable agreement. The final relation found for Cabauw is PM2.5=124.5*AOD–0.34 (with PM2.5 in μg/m3) and is valid for fair weather conditions. The relationship determined between MODIS AOD and ground level PM2.5 at Cabauw is very similar to that based on the much larger dataset from the sun photometer data, after correcting for a systematic overestimation of the MODIS data of 0.05. We applied the relationship to a MODIS composite map to assess the PM2.5 distribution over the Netherlands. Spatial dependent systematic errors in the MODIS AOD, probably related to variability in surface reflectance, hamper a meaningful analysis of the spatial distribution of PM2.5 using AOD data at the scale of the Netherlands.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Javier Díaz-Fernández ◽  
Lara Quitián-Hernández ◽  
Pedro Bolgiani ◽  
Daniel Santos-Muñoz ◽  
Ángel García Gago ◽  
...  

Turbulence and aircraft icing associated with mountain waves are weather phenomena potentially affecting aviation safety. In this paper, these weather phenomena are analysed in the vicinity of the Adolfo Suárez Madrid-Barajas Airport (Spain). Mountain waves are formed in this area due to the proximity of the Guadarrama mountain range. Twenty different weather research and forecasting (WRF) model configurations are evaluated in an initial analysis. This shows the incompetence of some experiments to capture the phenomenon. The two experiments showing the best results are used to simulate thirteen episodes with observed mountain waves. Simulated pseudosatellite images are validated using satellite observations, and an analysis is performed through several skill scores applied to brightness temperature. Few differences are found among the different skill scores. Nevertheless, the Thompson microphysics scheme combined with the Yonsei university PBL scheme shows the best results. The simulations produced by this scheme are used to evaluate the characteristic variables of the mountain wave episodes at windward and leeward and over the mountain. The results show that north-northwest wind directions, moderate wind velocities, and neutral or slightly stable conditions are the main features for the episodes evaluated. In addition, a case study is analysed to evidence the WRF ability to properly detect turbulence and icing associated with mountain waves, even when there is no visual evidence available.


1997 ◽  
Vol 43 (144) ◽  
pp. 283-299 ◽  
Author(s):  
Johan Kleman ◽  
Clas Hättestrand ◽  
Ingmar Borgström ◽  
Arjen Stroeven

AbstractThe evolution of ice-sheet configuration and flow pattern in Fennoscandia through the last glacial cycle was reconstructed using a glacial geological inversion model, i.e. a theoretical model that formalises the procedure of using the landform record to reconstruct ice sheets. The model uses mapped flow traces and deglacial melt-water landforms, as well as relative chronologies derived from cross-cutting striae and till lineations, as input data. Flow-trace systems were classified into four types: (i) time-transgressive wet-bed deglacial fans, (ii) time-transgressive frozen-bed deglacial fans, (iii) surge fans, and (iv) synchronous non-deglacial (event) fans. Using relative chronologies and aggregation of fans into glaciologically plausible patterns, a series of ice-sheet Configurations at different time slices was erected. A chronology was constructed through correlation with dated stratigraphical records and proxy data reflecting global ice volume. Geological evidence exists for several discrete ice-sheet configurations centred over the Scandinavian mountain range during the early Weichselian. The build-up of the main Weichselian Fennoscandian ice sheet started at approximately 70 Ka, and our results indicate that it was characterised by an ice sheet with a centre of mass located over southern Norway. This configuration had a flow pattern which is poorly reproduced by current numerical models of the Fennoscandian ice sheet. At the Last Glacial Maximum the main ice divide was located overthe Gulf of Bothnia. A major bend in the ice divide was caused by outflow of ice to the northwest over the lowest part of the Scandinavian mountain chain. Widespread areas of preserved pre-late-Weichselian landscapes indicate that the ice sheet had a frozen-bed core area, which was only partly diminished in size by inward-transgressive wet-bed zones during the decay phase.


1954 ◽  
Vol 35 (8) ◽  
pp. 363-371 ◽  
Author(s):  
DeVer Colson

The standing-wave development to the lee of prominent mountain ridges presents not only an interesting meteorological phenomenon but also a definite hazard to certain aircraft operations. An analysis of the mountain-wave observations in the Sierras indicates the presence of strong winds normal to the mountain range as well as large vertical wind shears; and an inversion or at least a stable layer near the level of the mountain crest. Changes in the pressure and temperature patterns at both the surface and 500-mb level are shown for two examples of more intense wave developments. Also, mean surface and upper-level pressure and temperature patterns are shown for the strong-wave days. The association between these mean patterns and surface frontal movements, upper-level troughs, strong temperature gradients, and the jet stream are discussed. An example of the effect of wind shear and static stability is shown using equations and methods developed by Scorer. Data on the occurrence of mountain-wave activity in other mountainous areas of the West are now being collected. Two examples of these results are shown.


Sign in / Sign up

Export Citation Format

Share Document