scholarly journals INFLUENCE OF FUEL FLOW RATE VARIATION ON MOLTEN SALT REACTOR PERFORMANCE

2021 ◽  
Vol 247 ◽  
pp. 01008
Author(s):  
O Negri ◽  
T Abram

Molten Salt Reactors are Gen-IV reactors that use liquid fuel. Fluid fuel allows continuous removal of fission gases as well as batch fuel reprocessing. With these control mechanisms the system can be sustained within the desired operating temperature range and required power output. These methods rely on the presence of a chemical processing plant on-site that adds complexity. This also creates a risk of processing plant unavailability due to faults, emergency downtime or maintenance. The work considers variation of fuel salt flow rate in Molten Salt Reactors as a means of controlling reactor operation without using reprocessing. The analysis is performed using the Molten Salt Fast Reactor as an example. An extended version of the SERPENT Monte-Carlo transport code coupled with OpenFOAM generic platform were used for capturing delayed neutron drift, decay heat, gaseous fission product removal, calculating fuel salt velocity vectors and the fuel temperature distribution. The two models were coupled via a script that accounted for reactivity insertion between time steps and the changes caused in the fission power. Results confirm that, while operating at constant power, the difference between fuel inlet and outlet temperatures increase as the flow rate decreases. Burnup analysis has shown that while the average fuel temperature continues to reduce with time, the difference between inlet and outlet temperatures can be controlled by varying the flow rate while maintaining constant power. Finally, the variation in the fuel flow rate has been shown to extend the reactor operating time with no insertion of additional fissile inventory.

Author(s):  
Hun Cha ◽  
Yoo Seok Song ◽  
Kyu Jong Kim ◽  
Jung Rae Kim ◽  
Sung Min KIM

An inappropriate design of HRSG (Heat Recovery Steam Generator) may lead to mechanical problems including the fatigue failure caused by rapid load change such as operating trip, start-up or shut down. The performance of HRSG with dynamic analysis should be investigated in case of start-up or shutdown. In this study, dynamic analysis for the HRSG system was carried out by commercial software. The HRSG system was modeled with HP, IP, LP evaporator, duct burner, superheater, reheater and economizer. The main variables for the analysis were the temperature and mass flow rate from gas turbine and fuel flow rate of duct burner for given start-up (cold/warm/hot) and shutdown curve. The results showed that the exhaust gas condition of gas turbine and fuel flow rate of duct burner were main factors controlling the performance of HRSG such as flow rate and temperature of main steam from final superheater and pressure of HP drum. The time delay at the change of steam temperature between gas turbine exhaust gas and HP steam was within 2 minutes at any analysis cases.


Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.


Author(s):  
Gu Shan-Jian ◽  
Yang Mao-Lin ◽  
Li Xiang-Yi

A method to measure the fuel distribution and the percentage of fuel flow rate captured by a V-gutter flameholder in a high speed airstream has been developed. The effects of configuration and size of the probe and temprature of the sample mixture in the probe on measurement have been investigated. The detailed determination of isokinetic sampling condition is described. The effects of V-gutter geometry on flowfield have been considered. The total experimental error is of the order ±5%.


Author(s):  
Uyi Idahosa ◽  
Saptarshi Basu ◽  
Ankur Miglani

This paper reports an experimental investigation of dynamic response of nonpremixed atmospheric swirling flames subjected to external, longitudinal acoustic excitation. Acoustic perturbations of varying frequencies (fp = 0–315 Hz) and velocity amplitudes (0.03 ≤ u′/Uavg ≤ 0.30) are imposed on the flames with various swirl intensities (S = 0.09 and 0.34). Flame dynamics at these swirl levels are studied for both constant and time-dependent fuel flow rate configurations. Heat release rates are quantified using a photomultiplier (PMT) and simultaneously imaged with a phase-locked CCD camera. The PMT and CCD camera are fitted with 430 nm ±10 nm band pass filters for CH* chemiluminescence intensity measurements. Flame transfer functions and continuous wavelet transforms (CWT) of heat release rate oscillations are used in order to understand the flame response at various burner swirl intensity and fuel flow rate settings. In addition, the natural modes of mixing and reaction processes are examined using the magnitude squared coherence analysis between major flame dynamics parameters. A low-pass filter characteristic is obtained with highly responsive flames below forcing frequencies of 200 Hz while the most significant flame response is observed at 105 Hz forcing mode. High strain rates induced in the flame sheet are observed to cause periodic extinction at localized regions of the flame sheet. Low swirl flames at lean fuel flow rates exhibit significant localized extinction and re-ignition of the flame sheet in the absence of acoustic forcing. However, pulsed flames exhibit increased resistance to straining due to the constrained inner recirculation zones (IRZ) resulting from acoustic perturbations that are transmitted by the co-flowing air. Wavelet spectra also show prominence of low frequency heat release rate oscillations for leaner (C2) flame configurations. For the time-dependent fuel flow rate flames, higher un-mixedness levels at lower swirl intensity is observed to induce periodic re-ignition as the flame approaches extinction. Increased swirl is observed to extend the time-to-extinction for both pulsed and unpulsed flame configurations under time-dependent fuel flow rate conditions.


2016 ◽  
Vol 167 (4) ◽  
pp. 22-37 ◽  
Author(s):  
Zbigniew STĘPIEŃ

The paper aims at reviewing the evolution of the F1 engine technology and the associated regulatory framework governing the sport over the last 10 years. Technical regulations, in force since 2014, replaced the 2.4-liter V8 naturally aspirated engines with sophisticated hybrid units such as the 1.6-liter V6 turbocharged engines supported with energymanagement and recovery systems. Since 2014 the fundamental trend in the development of powertrains has been the advancement of their efficiency. Due to the fact that the fuel flow rate has been restricted, the maximum performance is now entirely dependent on the engine efficiency.


Author(s):  
S. F. Goh ◽  
S. Kusadomi ◽  
S. R. Gollahalli

The main purpose of this study was to comprehend the effects of burner diameter and fuel type on smoke point characteristics of a hydrocarbon diffusion flame and its radiation emission. The critical mass flow rate of pure fuel at this smoke point was measured. At nine different fractions of the critical mass flow rate, nitrogen gas was supplied along with the fuel to achieve smoke point. At each condition, flame radiation and flame height were measured. The axial radiation profile at the critical fuel mass flow rate for one burner was also measured. Three fuels of differing sooting propensities were used: ethylene (C2H4), propylene (C3H6), and propane (C3H8). Three different burners with inner diameters of 1.2 mm, 3.2 mm and 6.4 mm were used. Results showed that propylene had the highest critical fuel flow rate and the highest nitrogen dilution required to suppress smoking and total flame radiation, followed by ethylene and propane. For all fuels, the curves of nitrogen flow rate required for smoke suppression versus fuel flow rate exhibited a skewed bell shape. The variation of Reynolds number at the critical fuel mass flow rate with the burner diameter showed a linear relation. On the other hand, the variation of total flame radiation with burner diameter was nonlinear.


Author(s):  
Kokichi Sawada ◽  
Shinji Nakao ◽  
Tsuneaki Ishima ◽  
Tomio Obokata ◽  
Katsuyoshi Kawachi ◽  
...  

The structure, droplet characteristics and instantaneous fuel injection rate of two stage injection spray designed for direct injection gasoline engine were analyzed experimentally. A particle image velocimetry (PIV) to evaluate the instantaneous two-dimensional velocity field, a phase Doppler anemometer (PDA) and an instantaneous fuel flow rate meter based on a laser Doppler anemometer (LDA flow rate meter) were applied for the measurements. A swirl nozzle injector was used and injection conditions were 25 Hz of spray frequency, 2 ms and 1ms of the first and the second injection durations and 2.4, 3.3 and 9.1 ms of valve opening intervals. The initial jet of the second stage injection can overtook the main spray body of the first stage injection under the valve opening interval of 2.4 and 3.3 ms. The LDA flow rate meter made the injection rate measurement with sufficient accuracy in the two stage injection and showed the unstable second injection due to remaining pressure oscillation in the injection pipe. Both time averaged and time resolved PDA results were compared in the intermittent spray. The interaction between the first and the second sprays was also demonstrated in vector map obtained by the PIV measurement.


Author(s):  
Hossein Mohammad Ghasemi ◽  
Neda Gilani ◽  
Jafar Towfighi Daryan

Abstract In the present work, a different new arrangement of side-wall burners of an industrial furnace with varying fuel flow rate was studied by three-dimensional CFD simulation. Tube skin temperature and heat flux profiles were obtained by solving mass, momentum and energy equations of the furnace by Ansys Fluent software. A reasonable fuel flow rate ($$\dot m$$=0.0695 kg/s) was assigned and effect of different ratio of this rate (0.25$$\dot m$$, 0.5$$\dot m$$, 2$$\dot m$$, 4$$\dot m$$) was investigated on reactor tube skin temperature profiles. Heat and temperature non-uniform distribution was observed by proposed arrangement. It was found that proper range for fuel rate was 0.5$$\dot m$$ to 2$$\dot m$$. Temperature profiles were used in one dimensional plug flow reactor model equations to consider fuel rate variations on reactor performance. By the proposed burner arrangement, Propane conversion and Ethylene yield obtained 6.25 % and 7.2 % more than the base case. Furthermore coil outlet temperature (COT) decreased about 7 °C. Also, feed flowrate was taken as an effective parameter on reactor process under no coke formation condition. Results showed that by increasing fuel rate, outlet Propylene yield decreased, while, process gas temperature, pressure drop, process severity (propane conversion) and Ethylene yield increased along the reactor tube i. e. for 0.5$$\dot m$$ to 2$$\dot m$$ at 0.8 kg/s reactor flowrate, Propylene yield decreased 15.95 % and reached to zero, whereas Ethylene yield increased 16.5 %. Also, in any fuel rate, by increasing reactor feed flowrate, even though the reactor coil outlet temperature decreased, the desired product yields increased. At 0.95 kg/s reactor flowrate, maximum Ethylene yield was obtained about 45.5 % at 1$$\dot m$$ kg/s; while, Propylene yield production at 0.5$$\dot m$$ kg/s fuel rate was 22.41 %.


Sign in / Sign up

Export Citation Format

Share Document