scholarly journals A copula based representation for tailings dam failures

4open ◽  
2020 ◽  
Vol 3 ◽  
pp. 12
Author(s):  
Laura Maria Canno Ferreira Fais ◽  
Verónica Andrea González-López ◽  
Diego Samuel Rodrigues ◽  
Rafael Rodrigues de Moraes

In this article, we model the dependence between dam factor and D max, where dam factor is an indicator of risk of a tailings dam failure, which involves the height H of the tailings dam, the volume of material housed by the tailings dam VT and the volume dispensed by the tailings dam, VF, when the dam breaks. And, Dmax is the maximum distance traveled by the material released by the tailings dam, after the collapse. With the dependence found via copula models and Bayesian estimation, given a range of dam factor, we estimate the probability of the released material to exceed a certain threshold. Since the dam factor involves the released volume VF (unknown before the dam break), we present a naive way to estimate it using VT and H. In this way, it is possible to estimate the dam factor of a tailings dam and with such a value to identify the probability of the tailings dam to show a Dmax that exceeds a certain threshold.

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1087 ◽  
Author(s):  
Kun Wang ◽  
Peng Yang ◽  
Karen Hudson-Edwards ◽  
Wensheng Lyu ◽  
Chao Yang ◽  
...  

Tailings dam failure accidents occur frequently, causing substantial damage and loss of human and animal life. The prediction of run-out tailings slurry routing following dam failures is of great significance for disaster prevention and mitigation. Using satellite remote sensing digital surface model (DSM) data, tailings pond parameters and the advanced meshless smoothed particle hydrodynamics (SPH) method, a 3D real-scale numerical modelling method was adopted to study the run-out tailings slurry routing across real downstream terrains that have and have not been affected by dam failures. Three case studies, including a physical modelling experiment, the 2015 Brazil Fundão tailings dam failure accident and an operating high-risk tailings pond in China, were carried out. The physical modelling experiment and the known consequences were successfully modeled and validated using the SPH method. This and the other experiments showed that the run-out tailings slurry would be tremendously destructive in the early stages of dam failure, and emergency response time would be extremely short if the dam collapses at its full designed capacity. The results could provide evidence for disaster prevention and mitigation engineering, emergency management plan optimization, and the development of more responsible site plans and sustainable site designs. However, improvements such as rheological model selection, terrain data quality, computing efficiency and land surface roughness need to be made for future studies. SPH numerical modelling is a powerful and advanced technique that is recommended for hazard assessment and the sustainable design of tailings dam facilities globally.


Author(s):  
Dayu Yu ◽  
Liyu Tang ◽  
Chongcheng Chen

Abstract. A tailings dam accident can cause serious ecological disaster and property loss. Simulation of a tailings dam accident in advance is useful for understanding the tailings flow characteristics and assessing the possible extension of the impact area. In this paper, a three-dimensional (3-D) computational fluid dynamics (CFD) approach was proposed for reasonably and quickly predicting the flow routing and impact area of mud flow from a dam failure across 3-D terrain. The Navier–Stokes equations and the Bingham-Papanastasiou rheology model were employed as the governing equations and the constitutive model, respectively, and solved numerically in the finite volume method (FVM) scheme. The volume of fluid (VOF) method was used to track the interface between the tailings and air. The accuracy of the CFD model and the chosen numerical algorithm were validated using an analytical solution of the channel flow problem and a laboratory experiment on the dam break problem reported in the literature. In each issue, the obtained results were very close to the analytical solutions or experimental values. The proposed approach was then applied to simulate two scenarios of tailings dam failures, one of which was the Feijão tailings dam that failed on 25 January 2019, and the simulated routing coincided well with the in situ investigation. Therefore, the proposed approach does well in simulating the flow phenomenon of tailings after a dam break, and the numerical results can be used for early warning of disasters and emergency response.


2013 ◽  
Vol 13 (2) ◽  
pp. 425-437 ◽  
Author(s):  
M. Peng ◽  
L. M. Zhang

Abstract. An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.


Author(s):  
Chen Luo ◽  
Ke Xu ◽  
Yunsheng Zhao

In view of the disastrous consequences of tailings dam break and its unique evolutionary process in complex areas, this paper constructs two-dimensional shallow water equations, rheological equations and mathematical models of tailings sand flows on the basis of Navier–Stokes equations (N–S equations). It performs total variation diminishing (TVD) discretization on these equations, develops forward simulation programs in MATLAB2016 and conducts numerical analyses on three kinds of dam breaks (ideal dam break, asymmetric dam break and dam break with obstacles in the downstream area). The results show that TVD discretization is effective in capturing shock waves. According to the analysis on consequences of Huangmailing Tailings Dam break, the author obtains the maximum distance of tailings sand flow, the flow rate of tailings and the time that tailings reach destinations in the downstream area, thereby providing scientific basis for disaster analyses on similar tailings dam breaks and supplying technical support for emergency rescues after disasters.


2012 ◽  
Vol 594-597 ◽  
pp. 299-302 ◽  
Author(s):  
Hai Yan Ju ◽  
Gui Qing Gao ◽  
Qiu Xiang Li ◽  
Jian Hua Li

Tailings dam is a potential risk source in the metal mines, once the tailings dam break, it will not only lead to tremendous loss in people’s lives and property, but also result in serious environmental pollution. Basing on the accidents of tailings dam failure at home, the dam failure causes are analyzed, some technology and management suggestions about decreasing dam-break accident are put forward, which provide reference for safety management to tailings dam.


Author(s):  
Rubens Augusto Amaro Junior ◽  
Lucas Soares Pereira ◽  
Liang-Yee Cheng ◽  
Ahmad Shakibaeinia

2021 ◽  
Vol 11 (12) ◽  
pp. 5638
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Hasan Guzel ◽  
Kaan Dal ◽  
Ada Yilmaz ◽  
...  

Dam-break flood waves represent a severe threat to people and properties located in downstream regions. Although dam failure has been among the main subjects investigated in academia, little effort has been made toward investigating wave propagation under the influence of tailwater depth. This work presents three-dimensional (3D) numerical simulations of laboratory experiments of dam-breaks with tailwater performed at the Laboratory of Hydraulics of Iskenderun Technical University, Turkey. The dam-break wave was generated by the instantaneous removal of a sluice gate positioned at the center of a transversal wall forming the reservoir. Specifically, in order to understand the influence of tailwater level on wave propagation, three tests were conducted under the conditions of dry and wet downstream bottom with two different tailwater depths, respectively. The present research analyzes the propagation of the positive and negative wave originated by the dam-break, as well as the wave reflection against the channel’s downstream closed boundary. Digital image processing was used to track water surface patterns, and ultrasonic sensors were positioned at five different locations along the channel in order to obtain water stage hydrographs. Laboratory measurements were compared against the numerical results obtained through FLOW-3D commercial software, solving the 3D Reynolds-Averaged Navier–Stokes (RANS) with the k-ε turbulence model for closure, and Shallow Water Equations (SWEs). The comparison achieved a reasonable agreement with both numerical models, although the RANS showed in general, as expected, a better performance.


2016 ◽  
Vol 43 (10) ◽  
pp. 4929-4936 ◽  
Author(s):  
H. Agurto‐Detzel ◽  
M. Bianchi ◽  
M. Assumpção ◽  
M. Schimmel ◽  
B. Collaço ◽  
...  

2019 ◽  
Vol 27 (1) ◽  
pp. 344-353
Author(s):  
Abdul-Hassan K. Al-Shukur ◽  
Ranya Badea’ Mahmoud

One of the most common type of embankment dam failure is the dam-break due to overtopping. In this study, the finite elements method has been used to analyze seepage and limit equilibrium method to study stability of the body of an earthfill dam during the flood condition. For this purpose, the software Geostudio 2012 is used through its subprograms SEEP/W and SLOPE/W. Al-Adhaim dam in Iraq has been chosen to analysis the 5 days of flood. It was found that the water flux of seepage during the flood reaches about 8.772*10-5. m3/sec when the water level 146.5 m at 2nd day. Seepage through the embankment at maximum water level increased by 55.1 % from maximum water level. It was concluded that the factor of safety against sliding in downstream side decrease with increasing water level and vice versa. It was also concluded that the deposits are getting more critical stability during the conditions of flood when the factor of safety value reaches 1.219 at 2nd day.


Sign in / Sign up

Export Citation Format

Share Document