scholarly journals Utilization of alternative fuels and materials in cement kiln towards emissions of benzene, toluene, ethyl-benzene and xylenes (BTEX)

2018 ◽  
Vol 147 ◽  
pp. 08002
Author(s):  
Ulfi Muliane ◽  
Puji Lestari

Co-processing in cement industry has benefits for energy conservation and waste recycling. Nevertheless, emissions of benzene, toluene, ethyl-benzene, and xylenes (BTEX) tend to increase compared to a non co-processing kiln. A study was conducted in kiln feeding solid AFR (similar to municipal solid waste, MSW) having production capacity 4600-ton clinker/day (max. 5000 ton/day) and kiln feeding biomass having production capacity 7800-ton clinker/day (max. 8000 ton/day). The concentration of VOCs emissions tends to be higher at the raw mill on rather than the raw mill off. At the raw mill on, concentration of total volatile organic carbon (VOCs) emission from cement kiln stack feeding Solid AFR 1, biomass, Solid AFR 2, and mixture of Solid AFR and biomass is 16.18 mg/Nm3, 16.15 mg/Nm3, 9.02 mg/Nm3, and 14.11 mg/Nm3 respectively. The utilization of biomass resulted in the lower fraction of benzene and the higher fraction of xylenes in the total VOCs emission. Operating conditions such as thermal substitution rate, preheater temperature, and kiln speed are also likely to affect BTEX emissions.

2010 ◽  
Vol 16 (3) ◽  
pp. 213-217 ◽  
Author(s):  
Aleksandar Jovovic ◽  
Zoran Kovacevic ◽  
Dejan Radic ◽  
Dragoslava Stojiljkovic ◽  
Marko Obradovic ◽  
...  

Co-incineration of wastes started more than 20 years ago. In the last 10 years, the use of alternative fuels in the cement industry is continuously increasing. The use of solid wastes in cement kilns is one of the best technologies for a complete and safe destruction of these wastes, due to the fact that there is a simultaneous benefit of destroying wastes and getting the energy. However, particulate matters (PM) and gaseous chemicals emitted from a source into the environment could be directly transmitted to humans through air inhalation. Therefore, for accurate health risk estimation, the emission of pollutants must be determined. In this work, the analysis of the emission of different pollutants when replacing partially the fuel type used in a cement kiln is done. PM, PM10, heavy metals and inorganic pollutants are analyzed. The methods used for sampling and analysis are the standard methods suggested by the EU regulations for stack analysis. Experimental results have shown the encouraging results: in particular clinker characteristics were unmodified, and stack emissions (NOx, SO2 and CO mainly) were in the case of tires, slightly incremented but remaining almost always below the law imposed limits, and in some cases were even decreased.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


2021 ◽  
Vol 19 (4) ◽  
pp. 315-328
Author(s):  
N.M. Khalil ◽  
Yousif Algamal

This work aims at maximum exploitation of petroleum waste sludge as additive to portland cement to prepare blended cements and hence increasing its production capacity without further firing. This will decrease the main cement industry problems involving environmental pollution such as releasing gases and high-energy consumption during industry and hence maximizes the production economics. Six batches of ordinary portland cement (OPC) mixed with different proportions of petroleum waste sludge (PWS) donated as C1 (control batch contains no PWS), C2 (contains 90 wt.% of OPC+10 wt.% of PWS), C3 (contains 80 wt.% of OPC+20 wt.% of PWS), C4 (contains 70 wt.% of OPC+30 wt.% of PWS), C4 (contains 60 wt.% of OPC+40 wt.% of PWS) and C6 (contains 50 wt.% of OPC+50 wt.% of PWS), were prepared and mixed individually with the suitable amount of mixing water. Cement mixes C2, C3 and C4 showed improved cementing and physicomechanical properties compared with pure cement (C1) with special concern of mix C4. Such improvement is due to the relatively higher surface area as well as the high content of kaolinite and quartz in the added PWS (high pozzalanity) favoring the hydration process evidenced by the increase in the cement hydration product (portlandite mineral (Ca (OH) 2).


2019 ◽  
Vol 1398 ◽  
pp. 012014
Author(s):  
Przemysław Szymanek ◽  
Ewa Szymanek ◽  
Rafał Rajczyk

2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Togar W. S. Panjaitan ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Around 600 Mt carbon dioxide equivalents (CO2e) of anthropogenic greenhouse gases (GHG) emission originates from energy production and consumption in Indonesia annually. Of this output, 40 Mt CO2e comes from cement production. This makes the cement industry a key sector to target in Indonesia’s quest to reduce its emissions by 26% by 2020. Substantial opportunities exist for the industry to reduce emissions, mainly through clinker substitution, alternative fuels, and the modernization of kiln technologies. However, most of these abatement options are capital intensive and considered as noncore business. Due to this, the private sector is unlikely to voluntarily invest in emission reduction unless it saves money, improves revenue, enhances the strategic position of the firm, or unless governments provide incentives or force adoption through regulatory and policy controls. In this study, we review the profile of the Indonesian cement industry and assess the carbon management and climate policy actions available to reduce emissions. The case highlights opportunities for improved carbon management in emission-intensive industries in developing countries.


2016 ◽  
Vol 10 (1) ◽  
pp. 163
Author(s):  
Hamid Rahimian ◽  
Mojtaba Kazemi ◽  
Abbas Abbspour

This research aims to determine the effectiveness of training based on learning organization in the staff of cement industry with production capacity over ten thousand tons. The purpose of this study is to propose a training model based on learning organization. For this purpose, the factors of organizational learning were introduced by qualitative research in the form of open codes, axial codes, selective codes and the resulted observations, and then the final model was obtained by structural equation model. The data were collected from the staff of three cement companies of Abyek, Tehran, and Sepahan, with a statistical population of 1719 staff of cement industry. The qualitative research sample included 29 experienced experts in the field of cement industry, and the quantitative research sample included 326 staff and experts, who were selected by multi-stage cluster sampling. A self-made questionnaire consisting of 72 questions was used to measure quantitative variables. The reliability of the questionnaire was 0.93 and its content and face validity was determined by expert colleagues and professors, the structural equation model and regression was used to analyze the quantitative data. The results showed that the status of learning organization in cement companies is in average level. Finally, the obtained model consisted of both individual and organizational factors. The individual factors affecting organizational learning include teaching scientific content, perception, trust, and self-efficacy of training. The organizational factors affecting organizational learning include organizational culture, forming the structure, the method of management and leadership, preparing human resource (identity), adaption to the environment, policies, rules, and regulations, and achieving a viable product. The share of individual factors on learning organization is higher than the effect organizational factors; the share of each factor is also determined.


Author(s):  
Andrew Corber ◽  
Nader Rizk ◽  
Wajid Ali Chishty

The National Jet Fuel Combustion Program (NJFCP) is an initiative, currently being led by the Office of Environment & Energy at the FAA, to streamline the ASTM jet fuels certification process for alternative aviation fuels. In order to accomplish this objective, the program has identified specific applied research tasks in several areas. The National Research Council of Canada (NRC) is contributing to the NJFCP in the areas of sprays and atomization and high altitude engine performance. This paper describes work pertaining to atomization tests using a reference injection system. The work involves characterization of the injection nozzle, comparison of sprays and atomization quality of various conventional and alternative fuels, as well as use of the experimental data to validate spray correlations. The paper also briefly explores the application viability of a new spray diagnostic system that has potential to reduce test time in characterizing sprays. Measurements were made from ambient up to 10 bar pressures in NRC’s High Pressure Spray Facility using optical diagnostics including laser diffraction, phase Doppler anemometry (PDA), LIF/Mie Imaging and laser sheet imaging to assess differences in the atomization characteristics of the test fuels. A total of nine test fluids including six NJFCP fuels and three calibration fluids were used. The experimental data was then used to validate semi-empirical models, developed through years of experience by engine OEMs and modified under NJFCP, for predicting droplet size and distribution. The work offers effective tools for developing advanced fuel injectors, and generating data that can be used to significantly enhance multi-dimensional combustor simulation capabilities.


2005 ◽  
Vol 14 (4) ◽  
pp. 419-444 ◽  
Author(s):  
O. Atteia ◽  
M. Franceschi

L'atténuation naturelle des BTEX (Benzène, Toluène, Ethyl-benzène, Xylène) et des solvants chlorés est de plus en plus étudiée en raison des potentialités offertes par cette technique de gestion. Cet article, après avoir présenté les aspects abiotiques de l'atténuation détaille les conditions chimiques nécessaires à la réalisation des réactions de biodégradation des polluants organiques. Les aspects thermodynamiques sont abordés afin de décliner les réactions possibles et celles qui ne le sont pas selon les environnements chimiques. La dégradation des BTEX est focalisée sur le benzène, produit le plus toxique et le moins dégradable sur la plupart des sites. Les détails de la dégradation du benzène sur le terrain sont analysés dans la littérature et leur comparaison permet de décrire les mécanismes responsables de celle-ci. Dans le cas des solvants chlorés, l'attention est portée sur le TCE (Trichloréthylène), produit le plus couramment rencontré sur les sites pollués. Une mise en parallèle des évolutions de teneurs observées et des conditions chimiques locales permet de mettre en évidence les conditions nécessaires à la dégradation du TCE, et de ses congénères, ainsi que les cinétiques de dégradation dans différentes conditions. La mise en évidence du rôle prépondérant des conditions chimiques conduit à remettre en cause l'utilisation répandue des constantes de dégradation du premier ordre et donne des pistes pour les modèles nécessaires à une prédiction plus fine de l'atténuation naturelle.


Sign in / Sign up

Export Citation Format

Share Document