scholarly journals A computational study on the influence of the delayed yielding phenomenon in magnetorheological oils on the steady state vibration and forces transmitted between the rotor and its frame

2018 ◽  
Vol 148 ◽  
pp. 04001
Author(s):  
Jaroslav Zapoměl ◽  
Petr Ferfecki ◽  
Jan Kozánek

The theoretical analyses and practical experience show that only the damping effect adaptable to the current operating conditions makes it possible to achieve optimum performance of damping devices inserted in the supports of rotating machines. This is offered by magnetorheological squeeze film dampers. The magnetorheological oils are liquids sensitive to magnetic induction. Their response to the change of a magnetic field is not instantaneous, but it is a process called the delayed yielding. The research was focused on enhancement of the mathematical model of the magnetorheological squeeze film damper by considering the delayed yielding phenomenon and on its application for the study of the influence of the delayed yielding on the force transmission between the rotor and its stationary part. The results of the computational simulations show that rising value of the delayed yielding time constant that characterizes the delayed yielding process reduces the damping effect and efficiency of the magnetorheological damping devices.

2019 ◽  
Vol 43 (3) ◽  
pp. 306-321 ◽  
Author(s):  
Maxime Perreault ◽  
Sina Hamzehlouia ◽  
Kamran Behdinan

In high-speed turbomachinery, the presence of rotor vibrations, which produce undesirable noise or shaft deflection and losses in performance, has brought up the need for the application of a proper mechanism to attenuate the vibration amplitudes. Squeeze-film dampers (SFDs) are a widely employed solution to the steady-state vibrations in high-speed turbomachinery. SFDs contain a thin film of lubricant that is susceptible to changes in temperature. For this reason, the analysis of thermohydrodynamic (THD) effects on the SFD damping properties is essential. This paper develops a computational fluid dynamics (CFD) model to analyze the THD effects in SFDs, and enabling the application of CFD analysis to be a base-line for validating the accuracy of analytical THD SFD models. Specifically, the CFD results are compared against numerical simulations at different operating conditions, including eccentricity ratios and journal whirl speeds. The comparisons demonstrate the effective application of CFD for THD analysis of SFDs. Additionally, the effect of the lubricant THDs on the viscosity, maximum and mass-averaged temperature, as well as heat generation rates inside the SFD lubricant are analyzed. The temperature of the lubricant is seen to rise with increasing whirl speed, eccentricity ratios, damper radial clearance, and shaft radii.


Author(s):  
Luis San Andrés

Aircraft engine rotors are particularly sensitive to rotor imbalance and sudden maneuver loads, since they are always supported on rolling element bearings with little damping. Most engines incorporate squeeze film dampers (SFDs) as means to dissipate mechanical energy from rotor vibrations and to ensure system stability. The paper quantifies experimentally the forced performance of a SFD comprising two parallel film lands separated by a deep central groove. Tests are conducted on two open ends SFDs, both with diameter D = 127 mm and nominal radial clearance c = 0.127 mm. One damper has film lands with length L = 12.7 mm (short length), while the other has 25.4 mm land lengths. The central groove has width L and depth 3/4 L. A light viscosity lubricant flows into the central groove via three orifices, 120 deg apart and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various eccentric positions and electromagnetic shakers excite the test system with periodic loads to generate whirl orbits of specific amplitudes. A frequency domain method identifies the SFD damping and inertia force coefficients. The long damper generates six times more damping and about three times more added mass than the short length damper. The damping coefficients are sensitive to the static eccentricity (up to ∼ 0.5 c), while showing lesser dependency on the amplitude of whirl motion (up to 0.2 c). On the other hand, inertia coefficients increase mildly with static eccentricity and decrease as the amplitude of whirl motion increases. Cross-coupled force coefficients are insignificant for all imposed operating conditions on either damper. Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the adjacent squeeze film lands, but contributes to the amplification of the film lands’ reaction forces. Predictions from a novel SFD model that includes flow interactions in the central groove and feed orifices agree well with the test force coefficients for both dampers. The test data and predictions advance current knowledge and demonstrate that SFD-forced performance is tied to the lubricant feed arrangement.


2016 ◽  
Vol 821 ◽  
pp. 309-316
Author(s):  
Jaroslav Zapoměl ◽  
Jan Kozánek ◽  
Petr Ferfecki

Unbalance of rotors is one of the principal causes of their lateral vibration. A technological solution frequently used to its suppression consists in placing damping devices to the rotor supports. To achieve their optimum performance their damping effect must be controllable. This is offered by squeeze film dampers utilizing the magnetorheological phenomenon to control the damping force. In mathematical models magnetorheological oils are usually represented by Bingham or Herschel-Bulkley theoretical materials. Here the magnetorheological oil is modeled by bilinear material with the yielding shear stress depending on magnetic induction. Its flow curve is continuous which contributes to reducing nonlinear character of the motion equations. The new mathematical model was applied to investigate several operating regimes of rotating machines.


2001 ◽  
Vol 124 (2) ◽  
pp. 346-350 ◽  
Author(s):  
Luis San Andre´s ◽  
Sergio E. Diaz

Squeeze film dampers (SFDs) reduce rotor vibrations and control dynamic instabilities in turbomachinery. Depending on damper geometry and operating conditions, the kinematics of journal motion can induce air ingestion and entrapment, produce lubricant vapor cavitation, or both. Air ingestion is the most common condition found in open ended dampers due to the low levels of external pressurization used in practice. The degrading effect of air entrapment on damper performance not only defies predictive models but also constrains the design of SFDs to a costly trial and error process based on prior experience. The present measurements correlate for the first time dynamic squeeze film pressures and pictures of the flow field with the air volume content in the lubricant mixture of a damper performing circular centered motion. The photographs of the flow field at key instances of journal motion show the development of a non-homogeneous flow with large striated cavities of air that persist even in the regions of positive (above ambient) dynamic pressures.


Author(s):  
Jaroslav Zapoměl ◽  
Petr Ferfecki

Unbalance of rotating parts is the main source of excitation of lateral oscillations of rotors, of increase of time varying forces transmitted to the rotor stationary part, and of energy losses generated in the support elements. The technological solution, which makes it possible to reduce these undesirable effects, consists in adding damping devices to the rotor supports. A simple dynamical analysis shows that to achieve their optimum performance their damping effect must be adaptable to the current operating speed. This is enabled by magnetorheological squeeze film dampers, the damping effect of which is controlled by the change of magnetic flux passing through the lubricating layer. The developed mathematical model of the magnetorheological squeeze film damper is based on assumptions of the classical theory of lubrication and on representing the magnetorheological oil by a bilinear material. The results of the carried out computational simulations show that the appropriate control of the damping force makes it possible to minimize the energy losses in a wide range of operating speeds. The development of a new mathematical model of the magnetorheological squeeze film damper, the extension of computational procedures, in which this model has been implemented, the confirmation that the magnetorheological dampers make it possible to reduce energy losses in the rotor supports, and learning more on influence of controllable dampers on behavior of rotor systems are the principal contributions of the presented paper. The carried out research highlights the possibility of reducing the energy losses by means of employing magnetorheological squeeze film dampers, which represents a new field of their prospective application.


Author(s):  
J. Y. Zhao ◽  
I. W. Linnett ◽  
E. J. Hahn

This paper proposes an improved squeeze film damper which will prevent the bistable operation associated with conventional squeeze film dampers at large unbalances and/or at small bearing parameters. It consists of a conventional squeeze film damper with a flexibly supported outer ring. This secondary flexible support is considered to be massless, and to have a constant stiffness and damping. The effectiveness of this damper in preventing bistable operation is investigated over a wide range of operating conditions for a rigid rotor supported on a centrally preloaded squeeze film damper. It is shown that depending on relevant parameters such as the stiffness ratio between the secondary support and the retaining spring, the damping coefficient of the support, and the mass ratio between the damper outer ring and the rotor, this proposed damper is very effective in preventing bistable operation even for high unbalance conditions.


Author(s):  
B. Domes ◽  
H. Hartmüller ◽  
G. Tokar ◽  
G. Wang

Abstract The new BR 700 series of twin spool engines, of the thrust class of 15,000 to 20,000 pounds, is being developed for business jets. In this paper the rotordynamic vibration analysis is performed with a detailed whole engine model including both rotors, bearings with oil squeeze film dampers and squirrel cages, the engine structure, the mounts and the fuselage. The analytical method is described and some calculated results are presented. The effectiveness of the oil squeeze film dampers on all main bearings will be demonstrated. The comparison of the analytical and the measured results gives a good agreement in the resonance frequencies and in the damping characteristics. It also shows that a linear analysis can describe with sufficient accuracy the dynamic behaviour of such a complex structure like a twin spool engine under normal operating conditions.


1990 ◽  
Vol 112 (2) ◽  
pp. 347-353 ◽  
Author(s):  
F. Zeidan ◽  
J. Vance

This paper analyzes the effects of air entrainment and cavitation on the synchronous response of squeeze film supported rigid rotors. The fluid film force coefficients are obtained from experimental measurements corresponding to a wide spectrum of operating conditions. These conditions include regimes in which air entrainment effects are dominant. Other conditions where vapor cavitation and fluid inertial effects are dominant are included for comparison. The effects of air entrainment are shown to produce a nonlinear response representative of a softening spring effect not previously known to exist in squeeze film dampers.


Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
N. Ene ◽  
...  

Squeeze film dampers (SFD) are devices utilized to control the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. We present computed and measured unbalance responses of a shaft supported in DSFD. The oil forces which are utilized in the calculation of the unbalance response are obtained from numerical solutions of the Reynolds equation. A finite-difference algorithm is utilized for solving the pressure equation within the calculation of the dynamic response of the shaft.


Author(s):  
Luis San Andrés

Aircraft engine rotors are particularly sensitive to rotor imbalance and sudden maneuver loads since they are always supported on rolling element bearings with little damping. Most engines incorporate Squeeze Film Dampers (SFDs) as means to dissipate mechanical energy from rotor vibrations and to ensure system stability. The paper quantifies experimentally the forced performance of a SFD comprising two parallel film lands separated by a deep central groove. Tests are conducted on two open ends SFDs, both with diameter D = 127 mm and nominal radial clearance c = 0.127 mm. One damper has film lands with length L = 12.7 mm (short length), while the other has 25.4 mm land lengths. The central groove has width L and depth 3/4 L. A light viscosity lubricant flows into the central groove via three orifices, 120° apart, and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various eccentric positions and electromagnetic shakers excite the test system with periodic loads to generate whirl orbits of specific amplitudes. A frequency domain method identifies the SFD damping and inertia force coefficients. The long damper generates six times more damping and ∼three times more added mass than the short length damper. The damping coefficients are sensitive to the static eccentricity (up to ∼0.5c) while showing lesser dependency on the amplitude of whirl motion (up to 0.2c). On the other hand, inertia coefficients increase mildly with static eccentricity and decrease as the amplitude of whirl motion increases. Cross-coupled force coefficients are insignificant for all imposed operating conditions on either damper. Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the adjacent squeeze film lands but contributes to the amplification of the film lands’ reaction forces. Predictions from a novel SFD model that includes flow interactions in the central groove and feed orifices agree well with the test force coefficients for both dampers. The test data and predictions advance current knowledge and demonstrate SFD forced performance is tied to the lubricant feed arrangement.


Sign in / Sign up

Export Citation Format

Share Document