scholarly journals Analysis of motion of the three wheeled mobile platform

2018 ◽  
Vol 157 ◽  
pp. 01008
Author(s):  
Anna Jaskot ◽  
Bogdan Posiadała

The work is dedicated to the designing motion of the three wheeled mobile platform under the unsteady conditions. In this paper the results of the analysis based on the dynamics model of the three wheeled mobile robot, with two rear wheels and one front wheel has been included The prototype has been developed by the author's construction assumptions that is useful to realize the motion of the platform in a various configurations of wheel drives, including control of the active forces and the direction of their settings while driving. Friction forces, in longitudinal and in the transverse directions, are considered in the proposed model. Relation between friction and active forces are also included. The motion parameters of the mobile platform has been determined by adopting classical approach of mechanics. The formulated initial problem of platform motion has been solved numerically using the Runge-Kutta method of the fourth order. Results of motion analysis with motion parameters values are determined and sample results are presented.

2019 ◽  
Vol 254 ◽  
pp. 03006
Author(s):  
Anna Jaskot ◽  
Bogdan Posiadała

The dynamics problem of motion of the mobile platform with four wheel drive under the unsteady conditions have been formulated and analysed. The mobile platform prototype have been equipped with four independently driven and steered electric drive units.The theoretical model have been formed for the proposed design concept of the platform. The relations between friction forces in longitudinal and transverse directions in reference to the active forces have been considered. The analysis of the motion parameters for different configurations of the wheel positions has been included. The formulated initial problem has been numerically solved by using the Runge-Kutta method of the fourth order. The sample simulation results for different configurations of the platform elements during its motion have been included and the conclusions have been formulated.


Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu

To solve the urbanization and the economic challenges, a virtual track train (VTT) transportation system has been proposed in China. To evaluate the dynamic behavior of the VTT, a spatial dynamics model has been developed that considers the suspension system and the steering system. Additionally, the model takes into account road irregularity to make simulations more realistic. Based on the newly proposed dynamic model and a designed proportional–integral–derivative (PID) controller, simulation frames of the vehicle and of the VTT are established with the path-tracking performance. The results show that the vehicle and the VTT can run along a desired lane with allowable errors, verifying the proposed model. The vehicle and VTT with the four-wheel steering system show a better dynamic performance than the models with the front-wheel steering system in the curved section. Moreover, the simulation frame can be further applied to dynamics-related assessments, parameter optimization and active suspension control strategy.


2008 ◽  
Vol 392-394 ◽  
pp. 151-155
Author(s):  
Tong Wang ◽  
K. Jiang ◽  
Shu Qiang Xie ◽  
Shuang Shuang Hao

In this paper, the characteristics and general laws of cutting complex curved surface by wire electrical discharge machining (WEDM) system are studied. Based on analysis of motion parameters the universal mathematical model of polar coordinates is derived. Moreover, the simulation of WEDM system is introduced, which is carried out by using language Visual C++ and the three dimensional graph software OpenGL.This simulation method is helpful in improving machining quality and productivity of complex curved surfaces, and is fundation for establishing CAD/CAPP/CAM technology in WEDM.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650054
Author(s):  
Xiaoqin Zhang

This paper proposes a realistic model of magnetizing branches for transient calculation of electric power circuits. The model represents the nonlinear relationship between flux linkage and exciting current of magnetizing branches with a major loop and a family of minor loop trajectories, which has the capability of simulating the multi-valued hysteresis behavior. By applying the proposed model to transient calculation, an efficient algorithm is developed for obtaining the transient responses in electric power circuits. In the algorithm, the electric power circuit is divided into the magnetizing branches and the remaining linear part. The nonlinear differential equations are set up for the magnetizing branches and solved by the semi-explicit Runge–Kutta method. The transient calculation for the remaining linear part is performed on the basis of the solution to the magnetizing branches. Then, a laboratory measurement is made with a reduced-scale experimental arrangement. The measured results are compared with the calculated ones and a reasonable agreement is shown between them.


2005 ◽  
Vol 875 ◽  
Author(s):  
E.H. Tan ◽  
L.Z. Sun

AbstractBased on the physical background, a new dislocation dynamics model fully incorporating the interaction among differential dislocation segments is developed to simulate 3D dislocation motion in crystals. As the numerical simulation results demonstrate, this new model completely solves the long-standing problem that simulation results are heavily dependent on dislocation-segment lengths in the classical dislocation dynamics theory. The proposed model is applied to simulate the effect of dislocations on the mechanical performance of thin films. The interactions among the dislocation loops, free surface and interfaces are rigorously computed by a decomposition method. This framework can be used to simulate how a surface loop evolves into two threading dislocations and to determine the critical thickness of thin films. Furthermore, the relationship between the film thickness and yield strength is established and compared with the conventional Hall-Petch relation.


Author(s):  
František Peterka

Abstract The motion with impacts and dry friction forces appears in some mechanical systems as mechanisms with clearances, (e.g., in gearings, pins, slots, guides, valve gears etc.), impact dampers, relays, forming and mailing machines, power pics etc. Such mechanisms include one or more pairs of impacting bodies, which introduce the strong nonlinearity into the system motion. The motion of the general pair of bodies with the both-sides impacts and dry friction forces is assumed (Fig.1). It can be the part of a more complex chain of masses in the mechanical system. Dead zones in the relative motion of bodies can be caused by assumed nonlinearities. The mathematical conditions controlling the numerical simulations or analytical solution of the motion are introduced. The application of this method is explained by the study of the influence of dry friction force on amplitude-frequency characteristics of four types of dynamical and impact dampers with optimised parameters.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Malik Muhammad Ibrahim ◽  
Muhammad Ahmad Kamran ◽  
Malik Muhammad Naeem Mannan ◽  
Sangil Kim ◽  
Il Hyo Jung

The mathematical modeling of malaria disease has a crucial role in understanding the insights of the transmission dynamics and corresponding appropriate prevention strategies. In this study, a novel nonlinear mathematical model for malaria disease has been proposed. To prevent the disease, we divided the infected population into two groups, unaware and aware infected individuals. The growth rate of awareness programs impacting the population is assumed to be proportional to the unaware infected individuals. It is further assumed that, due to the effect of awareness campaign, the aware infected individuals avoid contact with mosquitoes. The positivity and the boundedness of solutions have been derived through the completing differential process. Local and global stability analysis of disease-free equilibrium has been investigated via basic reproductive number R0, if R0 < 1, the system is stable otherwise unstable. The existence of the unique endemic equilibrium has been also determined under certain conditions. The solution to the proposed model is derived through an iterative numerical technique, the Runge–Kutta method. The proposed model is simulated for different numeric values of the population of humans and anopheles in each class. The results show that a significant increase in the population of susceptible humans is achieved in addition to the decrease in the population of the infected mosquitoes.


2012 ◽  
Vol 614-615 ◽  
pp. 1390-1393
Author(s):  
Xue Ping Zhan ◽  
Ya Duo Liu ◽  
Bin Liu ◽  
Kuan Jun Zhu

In this paper, the models of the multi-bundled conductors are constructed by finite element method. The wake effect of aerodynamic parameter of sub-conductor of the windward side relative to the leeward side is studied. The numerical results are given by using the 4th order Runge-Kutta method. Similarly, the proposed model can be added to the different aerodynamic loads on each individual sub-conductor of a bundle conductor during the simulation of galloping. Thus the numerical results are much closer to the actual movement of galloping and provide a useful reference for anti-galloping.


Author(s):  
Yu Xing ◽  
Hua Xu ◽  
Xuejing Liu ◽  
Hui Xi ◽  
Shibin Wang

This work presents a theoretical model to research the vibration due to surface waviness of spherical roller bearings (SRBs), taking account of the self-aligning feature and the external axial load. The surface waviness is described by cosinoidal functions. The self-aligning features, including the variation law of the self-aligning contact angle and the interaction with the external loads, are introduced into the non-Hertzian contact model. The nonlinear equations are solved by Runge–Kutta method and the proposed model is validated by comparing with the results of the published references. The results show more characteristic frequencies will be excited under the self-aligning operating condition, whereby the improved equations proposed in this paper are recommended to instead of the previous ones to predict characteristic frequencies of the waviness vibration in an SRB. In addition, these characteristic vibrations caused by waviness are obviously influenced by the magnitude and the direction of the self-aligning contact angle. A proper pretightening load should be chosen according to the self-aligning feature or else it will lead to hidden dangers. The radial clearance and the waviness amplitude can both highlight the effect of waviness. And the vibration caused by a larger radial clearance may be fiercer than the vibration due to waviness.


2014 ◽  
Vol 505-506 ◽  
pp. 301-309
Author(s):  
Hua Dong Xu

The steering stability of a vehicle at high speed is the urgent key problem to be solved of automobile independent development. And it is also the premise and one of the necessary conditions of vehicle safety. Considering of the effects of tire nonlinearity, a 4-DOF dynamics model for a vehicle is established. The yaw rate responses, side slip angle, carriage roll angle and front wheel steering angle with different vehicle speeds are calculated. The calculated values are then compared with the values without considering of the effects of tire nonlinearity. The simulations results show that the vehicle responses can be reflected accurately by using nonlinear tire model. With the bigger vehicle speed, the effects of tire nonlinearity on vehicle high-speed steering stability become more obvious.


Sign in / Sign up

Export Citation Format

Share Document