scholarly journals Effect of hot air assisted infrared drying on drying characteristics and quality of rice bran pellets

2018 ◽  
Vol 192 ◽  
pp. 03040 ◽  
Author(s):  
Sahachart Sansak ◽  
Jiraporn Sripinyowanich Jongyingcharoen

The objective of this study was to determine drying characteristics and quality of rice bran pellet subjected to hot air assisted infrared (HA-IR) drying at different levels of infrared (IR) intensity (750 – 3750 W/m2) and air temperature (40 – 80°C). The rice bran pellets were dried from 0.18 to 0.08 g water/g dry matter. The maximum drying rate (DR) and drying time were in the ranges of 0.0030 – 0.0165 g water/g dry matter·min and 8 – 54 min, respectively. Higher IR intensity and air temperature resulted in greater maximum DR and shorter drying time. The same trend was also observed for the effective moisture diffusivity (Deff) values which were between 0.3103×10-7 and 2.7603×10-7 m2/s. As compared to the commercial reference sample of dried rice bran pellets, the products of this study had higher oil content and lower FFA content. The oil content was affected by IR intensity only while the FFA content was affected both by IR intensity and air temperature. HA-IR drying could improve drying characteristics of the rice bran pellets and produce better quality of the dried products.

2018 ◽  
Vol 192 ◽  
pp. 03060
Author(s):  
Pattarachai Vichaiya ◽  
Jiraporn Sripinyowanich Jongyingcharoen

The purposes of this research were divided into two parts: (1) to determine the drying characteristics and quality of parboiled paddy undergoing vibratory bed assisted infrared (VIR) drying, and (2) to study the stability of rice bran from the VIR-dried parboiled paddy. Infrared (IR) drying and hot air (HA) drying were applied for comparison purpose. For the experiment 1, VIR drying of parboiled paddy provided the best drying characteristics with the shortest drying time of 50 min and the maximum drying rate of 0.00146 g water/g dry matter·min. VIR drying also produced the greatest head rice yield of 61.3%. The experiment 2 presented that rice bran from VIR-dried parboiled paddy had the highest oil content of 0.256 ± 0.041 g/g dry matter and the most stable in term of minimum change in free fatty acid (FFA) content. The increase in FFA during storage for 14 days was 0.36%. However, the increases in FFA of rice bran from IR-and HA-dried parboiled rice and normal rice were 0.38, 1.36, and 4.10%, respectively.


2018 ◽  
Vol 6 (2) ◽  
pp. 552-565 ◽  
Author(s):  
Eunice Akello Mewa ◽  
Michael Wandayi Okoth ◽  
Catherine Nkirote Kunyanga ◽  
Musa Njue Rugiri

The objective of the present study was to determine the drying kinetics, moisture diffusivity and sensory quality of convective air dried beef. The effect of temperature of drying (30-60°C) and thickness of samples (2.5-10 mm) on the convective thin-layer drying kinetics of beefdried in a cabinet dryer was evaluated. Five semi-theoretical models were fit to the drying experimentaldata with the aim of predicting drying characteristics of beef and fitting quality of models determined using the standard error of estimate (SEE)and coefficient of determination (R2). Determination ofeffective moisture diffusivity (Deff) from the experimental drying datawas done and sensory quality of the optimized dried cooked and uncookedbeef samplesevaluated. Drying time and rate of drying increased with an increasing temperature but decreased with increased slice thickness. However, there was overlapping of drying curves at 40-50°C. Among the selected models, Page model gave the best prediction of beef drying characteristics. Effective moisture diffusivity (Deff) ranged between 4.2337 x 10-11 and 5.5899 x 10-10 m2/s, increasing with an increase in air temperature and beef slice thickness.Of all the sensory parameters evaluated, texture was the only attribute that gave significantly different (P > 0.05) scores between the cooked and uncooked dried beef samples.


2018 ◽  
Vol 192 ◽  
pp. 03041
Author(s):  
Setthawat Thanimkarn ◽  
Ekkapong Cheevitsopon ◽  
Jiraporn Sripinyowanich Jongyingcharoen

This study aimed to investigate the effect of drying temperature (40, 60, 80, and 100°C) on drying characteristics of Cissus quadrangularis Linn. (CQ) undergoing convective drying. Physical properties and phytochemicals of the dried CQ were also evaluated. CQ with the thickness of 5 mm was dried from about 10 to 0.1 g water/g dry matter. The results showed that increasing drying temperature increased drying rate (DR) and effective moisture diffusivity (Deff) and consequently decreased drying time. The drying time, maximum DR, and Deff were in the ranges of 85-1920 min, 0.0059-0.0248 g water/g dry matter·min, and 0.7302-9.1281×10-9 m2/s, respectively. Lower drying temperature could preserve quality of the dried CQ. Decreasing drying temperature resulted in greener and lower bulk density and shrinkage. The greatest total phenolic content (TPC) and quercetin content were obtained by drying the CQ at 60°C.


2013 ◽  
Vol 291-294 ◽  
pp. 132-136 ◽  
Author(s):  
Wen Guang Geng ◽  
Ling Gao ◽  
Xiao Xu Ma ◽  
Xiu Li Ma ◽  
Zong Yi Yu ◽  
...  

This paper presents experimental performance of a concentrator photovoltaic thermal (CPV/T) dryer for drying of honeysuckle flowers. The dryer consists of a perspex box structure. Heat for drying is provided by the excess heat of concentrator PV module and one fan powered by this concentrator PV ventilate the dryer. To investigate the experimental performances of the solar dryer for drying of honeysuckle flowers, 2 full scale experimental runs were conducted. Of which one experimental runs were conducted by hot air and the drying air temperature varied from 65°C to 80°C, the drying time was 5 hours. The other t experimental runs were conducted for natural sun drying for comparison, and the drying time was 5 hours too. Experiments were conducted for drying of honeysuckle in the month of June, 2012. Various half hourly experimental data namely moisture evaporated, honeysuckle surface temperatures, ambient air temperature and humidity, etc. were recorded to evaluate heat and mass transfer for the proposed system. The experimental results show that the quality of hot air dried products in terms of color, form, texture, etc. was high-quality dried products.


Author(s):  
Samuel Enahoro Agarry

The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models) were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2) and the root mean square error (RMSE). The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.


2019 ◽  
Vol 56 (1) ◽  
pp. 34
Author(s):  
Parul Bora ◽  
Asha Kawatra

<em>Experiments were conducted on pre treated dehydrated oyster mushroom with steeping in citric acid and sodium chloride and blanching to investigate the effect of pre treatments and drying methods on drying characteristics of mushroom and quality of dried oyster mushroom. Drying was accomplished in a cabinet dryer using hot air at 40<sup>O </sup>C, 60<sup>O</sup>C and by sun drying. The drying characteristics of mushroom were not affected by the pre-treatments significantly. However, the rate of drying increased with the increase in drying temperature. Increase in drying temperature significantly reduced the total drying time. Pre treatments and drying temperature had adverse influence on the rehydration ratio, hardness and colour of the dehydrated mushrooms. Blanching improves the colour of the dehydrated mushroom but increased hardness also. A loss of protein was observed during blanching</em>


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Mohd Rozainee Taib ◽  
Ida Idayu Muhamad ◽  
Chee Loong Ngo ◽  
Pang Soon Ng

Microwave vacuum and convective hot air dehydration of jackfruit (Artocarpus Heterophyllus) bulbs were carried out to study the effects of different dehydration treatments on drying characteristics, rehydration ability and quality attributes. Jackfruit bulbs were dehydrated by microwave power output of 58, 140, 220, and 321W respectively combined with vacuum level of -65 cmHg during microwave vacuum dehydration. Convective hot air dehydration was also conducted with the hot air temperature of 60, 70, and 80°C, respectively. Microwave vacuum dehydration with microwave power output of 321 W resulted in 133 times faster in drying time compared to convective hot air dehydration with hot air temperature of 60°C. All dehydration data were subjected to Newton and Page’s equation model fitting, where Page’s equation model was well fitted for all dehydration conditions with R2 > 0.994. Furthermore, microwave vacuum dehydration produced better quality of dehydrated jackfruit bulbs with higher rehydration ability and sensory attributes.


2019 ◽  
Vol 50 (1) ◽  
pp. 28-37
Author(s):  
Ernest Ekow Abano ◽  
Robert Sarpong Amoah ◽  
Eugene Kwabena Opoku

This study investigated the effect of air temperature, microwave power, and pomace thickness on the drying kinetics and quality of dried carrot pomace. The study established that the drying of carrot pomace occurs in the falling rate period, suggesting that drying was driven by molecular diffusion. The microwave-drying moisture diffusivity increased with microwave power and ranged between 1.57×10–8 and 2.61×10–8 m2/s. As regards convective air-drying, the moisture diffusivity values were between 3.38×10–10 and 8.27×10–10 m2/s. The microwave powerto-mass activation energy was 15.079 W/g for 5 mm, 7.599 W/g for 10 mm and 9.542 W/g for 15 mm dried samples. Meanwhile, the temperature-dependent activation energy for carrot pomace was found to be 27.637 kJ/mol for 5 mm, 17.92 kJ/mol for 10 mm and 38.76 kJ/mol for 15 mm thickness pomace. Generally, drying time decreased with increasing microwave power or air temperature. The ascorbic acid content of the fresh carrot pomace reduced after both microwave and convective air-drying. However, microwave power, and sample thickness had significant effect on the β-carotene content of dried products but air temperature did not have a significant effect. The effect of temperature and sample thickness on brown pigment formation was substantial with air temperature compared to microwave. The study has demonstrated that microwave drying, compared to conventional drying, enhances moisture removal, drying time, and preservation of carotenoids and ascorbic acid. Therefore, microwave drying can be considered as an alternative method for obtaining quality dried carrot pomace.


2021 ◽  
Vol 37 (5) ◽  
pp. 763-774
Author(s):  
Ernest Ekow Abano

HighlightsMicrowave pretreatment before drying reduced drying time significantly.Microwave-assisted drying increased the effective moisture diffusivity coefficient.Microwave pretreatment before convective hot-air drying improved quality parameters.The Middili et al. (2002) model best fitted the microwave-assisted drying of sugarloaf pineapples.Abstract. This study’s objective was to provide the optimum drying conditions to produce quality dried sugarloaf pineapples using microwave pretreatments before the conventional hot air drying. For this, the effect of microwave power (385 to 697 W), microwave time (2 to 4 min), and air temperature (50°C to 70°C) on the drying kinetics and quality of sugarloaf pineapple were evaluated using the Box Behnken response surface methodology. To reach a 17.44±0.09% kg/kg dry matter moisture content, we found the optimum drying conditions for sugarloaf pineapples to be 697 W microwave power for 2.26 min before convective hot air drying at a temperature of 64.75°C. The predicted drying time, ascorbic acid content, and browning index were 13.68 h, 20.89 mg/100 g, and 0.099 Abs unit at this optimum condition, respectively. The pineapple slices’ effective moisture removal rate pretreated with microwave before drying was higher than the control and was between 6.42 × 10-10 m2/s and 11.82 × 10-10 m2/s while ones without a microwave were between 3.54 × 10-10 m2/s and 8.78 × 10-10 m2/s for drying at air temperature between 50°C and 70°C. It was discovered that the Midilli et al. (2002) model was the most appropriate thin layer model for microwave-assisted drying of sugarloaf pineapples. The pineapple slices’ drying rate potential generally increased with microwave power and pretreatments time but not the corresponding increase in the air temperature. Drying time for microwave-assisted drying was in the range of 11 to 20 h, while the ones without microwaves were between 18 and 24 h. Therefore, microwaves should be considered a pretreatment step to the industrial production of sugarloaf pineapple to reduce drying time and produce better quality products. Keywords: Drying, Hot air, Microwave, Moisture diffusivity, Sugarloaf pineapple.


Sign in / Sign up

Export Citation Format

Share Document