scholarly journals Influence analysis of climate data time-step on the accuracy of HAM simulation

2018 ◽  
Vol 196 ◽  
pp. 02029 ◽  
Author(s):  
Peter Juras ◽  
Daniela Jurasova

Scientific research in the area of building simulations has a great potential and it is continuously developing and advancing. Computer simulations are helpful in many areas of Civil Engineering, such as energy demand, moisture transport, thermal comfort, ventilation etc. Climate data measured by experimental weather station are analyzed in this article. Weather station is located within the University campus and data recorded with a short are used in a non-steady heat-air-moisture simulation. Climate parameters differences caused by the various averaging periods are shown. This differences are also analyzed in term of outdoor surface temperatures calculated with WUFI Pro simulation software.

2018 ◽  
Vol 164 ◽  
pp. 01038
Author(s):  
Ridho Hantoro ◽  
Cahyun Budiono ◽  
Ronald Kipkoech Ketter ◽  
Nyoman Ade Satwika

Over 70 000 000 people in Indonesia have no access to electricity. This study was carried out in Bawean Islands which are located in the Java Sea about 150 km North of Surabaya, the headquarters of East Java. The study to determine the energy services available in the Bawean Island was done through interviewing a random sample of 72 households in two villages namely Komalasa and Lebak. Based on the average monthly electricity consumption of the sampled households connected to the grid, a hybrid renewable energy based electrical supply system was designed for Gili Timur Island, one of the satellite islands around Bawean Island. The system was designed with the aid of a time step simulation software used to design and analyze hybrid power systems. A sensitivity analysis was also carried out on the optimum system to study the effects of variation in some of the system variables. HOMER suggests that for the expected peak load of 131 kW, an optimum system will consist of 150 kW from PV array, two wind turbines each rated 10 kW, a 75 kW diesel generator and batteries for storage.


2015 ◽  
Vol 6 (2) ◽  
pp. 129-139 ◽  
Author(s):  
F. Szodrai ◽  
á. Lakatos

Recently, it has become extremely important to reduce the heating energy demand and the CO2 emission of buildings. This reduction can easily be achieved by insulating the shell of buildings. By thermal insulation not only the heating energy demand can be reduced but also higher thermal efficiency can be reached. Therefore, measurements, calculations and simulations are carried out on the energy efficiency of buildings. Furthermore, the combination of methods is of great importance. Combination of experiments with building simulations solution can make design practices and sizing processes easier in the investigation of building performance. The purpose of this article is to demonstrate how the energy balance of a building can be changed in function of the wet building envelope in the Central European Region. A real and available building (old family house) was tested and it was placed (hypothetically) in three different countries (Austria, Hungary and Slovakia). In this study two types of load-bearing structures (brick and concrete) covered with four different types of insulations (mineral wool, expanded polystyrene, graphite-doped expanded polystyrene, and extruded polystyrene) were tested. The change in the heating energy of the building in three different countries by the function of measured water contents of the thermal insulators was simulated by CASAnova simulation software.


2021 ◽  
Author(s):  
Kathrin Wehrli ◽  
Stefanie Gubler ◽  
Andreas M. Fischer ◽  
Sven Kotlarski

<p>By mid-Century the Swiss Climate Scenarios CH2018 project an additional warming of 2-3 degree Celsius in Switzerland if greenhouse emissions continue unabatedly. In consequence, heatwaves become longer, more intense and more frequent, whereas coldwaves will be less common. Changes in the outdoor climate also affect the indoor climate in buildings where people spend a substantial part of their day to work, study, and live. Buildings are designed to last for several decades with limited possibility to update heating and cooling systems. Hence, the climate a building will face during its lifetime has to be considered in the planning process. In general, it can be expected that the heating demand will decrease whereas the cooling demand will increase in the near future. However, a holistic and quantitative assessment of the effect of climate change on the energy demand in buildings is still missing. For the use in building simulations, climate data at hourly resolution with physical consistency for a number of key variables such as temperature, humidity and radiation are required. To ensure that the use of the data is feasible in practice, the climate of the future needs to be condensed into a single year, representing typical mean conditions as well as typical deviations from the mean. In addition to the typical year, the assessment of an extreme year can provide information on the level of comfort during a once in a lifetime event and the performance at maximum capacity of the installations. Users of this data are practitioners in the building sector as well as officials from federal offices.</p><p>Our project aims to provide future climate data for the building sector at station level. For this, we make use of observations as well as climate change information from the Swiss climate scenarios CH2018.  Together with the users, we define criteria that shall be represented by the future typical and extreme years. We design different methods to create this years based on observations and scenarios and under consideration of existing standards and regulations. The methods are compared in a climatological assessment and sensitivities to emission scenario and time horizon are explored using building simulations. The results of this project support decision-making to optimize national and international norms and regulations and to design adaptation measures. The climate data will be made available to practitioners who can use them to plan the buildings of the future.</p>


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 671f-671
Author(s):  
M. Marutani ◽  
R. Quitugua ◽  
C. Simpson ◽  
R. Crisostomo

A demonstration vegetable garden was constructed for students in elementary, middle and high schools to expose them to agricultural science. On Charter Day, a University-wide celebration, students were invited to the garden on the University campus. The purpose of this project was twofold: (1) for participants to learn how to make a garden and (2) for visitors to see a variety of available crops and cultural techniques. Approximately 30 vegetable crops were grown. The garden also presented some cultural practices to improve plant development, which included weed control by solarization, mulching, a drip irrigation system, staking, shading and crop cover. Different types of compost bins were shown and various nitrogen-fixing legumes were displayed as useful hedge plants for the garden.


2020 ◽  
Author(s):  
Naushad Khan ◽  
Shah Fahad ◽  
Mahnoor Naushad ◽  
Shah Faisal

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Author(s):  
Mohamed M. Abd El-Mawgod ◽  
Shimaa A. Elghazally ◽  
Heba M. Mohammed ◽  
Mariam Roshdy Elkayat ◽  
Doaa M. M. Osman

Abstract Background A healthy youth is considered the major human resource for any country development. They are suffering from unmet health needs. Considering these needs and their attitude towards the use of youth health center (YHC) services would help to improve both the quality and quantity of these services. Objectives To identify the students’ perceived health needs and their attitude towards use of the YHCs in Assiut University campus, Upper Egypt a cross-sectional study was conducted among 305 randomly selected university students. Data were collected using an interviewer-administered questionnaire. Results The majority of the students (80%) said that youth have special health needs. The most reported needs were psychological support, health education on different topics including reproductive health and sexually transmitted diseases, and nutritional services respectively. There was a high perception among surveyed students (71.5%) that the existing health services are inadequate for meeting their needs. Counseling, laboratory services, and premarital examination were the most frequently reported services mentioned by youth to be offered in YHCs. The majority (78.1%) preferred the health provider to be of the same sex. Despite the prevailing conservative culture in Upper Egypt, the students had positive attitude towards availability of sexual and reproductive information and establishment of a YHC in the university campus. A low awareness rate (15.1%) about the already existing YHC in university campus was revealed. Conclusion University students perceived that there are unmet needs for youth-specialized services, mainly for providing sexual and reproductive information, and establishment of an on-campus YHC. The study provides important information for policymakers about the perspectives of youth which should be taken into consideration when new YHC are planned and implemented.


Sign in / Sign up

Export Citation Format

Share Document