scholarly journals Comparative Study of Gait Gender Identification using Gait Energy Image (GEI) and Gait Information Image (GII)

2018 ◽  
Vol 197 ◽  
pp. 15006 ◽  
Author(s):  
Rosa Andrie Asmara ◽  
Irtafa Masruri ◽  
Cahya Rahmad ◽  
Indrazno Siradjuddin ◽  
Erfan Rohadi ◽  
...  

Identifying gender from the pedestrian video is one crucial key to study demographics in such areas. With current video surveillance technology, identifying gender from a distance is possible. This research proposed the utilization of computer vision to identify gender based on their walking gait. The data feature used to determine gender based on their walking gait divided into five parts, namely the head, chest, back, waist & buttocks, and legs. Two different methods are used to perform the real-time gender gait recognition process, i.e., Gait Energy Image (GEI) and Gait Information Image (GII), while the Support Vector Machine (SVM) method used as the data classifier. The experimental results show that the process of identifying gender based on walking with GEI method is 55% accuracy and GII method is 60% accuracy. From these results, it can conclude that the method GII with SVM classifier has the best accuracy in the process of gender classification

This paper explored a new part based gait recognition method to address the gait covariate factors. Firstly, three robust parts such as vertical-half, head, and lower leg are cropped from the Gait Energy Image (GEI). Since, these selected parts are not affected by the major gait covariates than other parts. Then, Radon transform is applied to each selected part. Next, standard deviations are computed for the specified radial lines (i.e. angles) such as 0 0 , 300 , 600 , 900 , 1200 and 1500 , since these radial lines cover the horizontal, vertical and diagonal directions. Lastly, fuse the features of three parts at feature level. Finally, Support Vector Machine (SVM) classifier is used for the classification procedure. The considerable amount of experimental trails are conducted on standard gait datasets and also, the correct classification rates (CCR) have shown that our proposed part based representation is robust in the presence of gait covariates.


Author(s):  
Rajib Ghosh

Background: Gait recognition focuses on identification of persons from their walking activity. This type of system plays an important role in visual surveillance applications. Walking pattern of every person is unique and difficult to replicate by others. Objective: The present article focuses on to develop a person identification system based on gait recognition. Methods: In this article, a novel gait recognition approach is proposed to show how human body Centre-of-mass-based walking characteristics can be used to recognize unauthorized and suspicious persons when they enter in a surveillance area. Walking pattern varies from person to person mainly due to the differences in the footsteps and body movement. Initially, background is modelled from the input video captured through static cameras deployed for security purpose. Foreground moving object in the individual frames are then segmented using the background subtraction algorithm. Centre-of-mass based discriminative features of various walking patterns are then studied using Support Vector Machine(SVM) classifier to identify each unique walking pattern. Results: The proposed system has been evaluated using a self-generated dataset containing side view of various walking video clips. The experimental results demonstrate that the proposed system achieves an encouraging person identification rate. Conclusion: This work can be further extended to provide a general approach in developing an automatic person identification system in unconstrained environment.


2014 ◽  
Vol 5 (4) ◽  
pp. 1-10
Author(s):  
Abdul Rahman I. Al-Ghadir ◽  
Abdullatif Alabdullatif ◽  
Aqil M. Azmi

The widespread usage of social media has attracted a new group of researchers seeking information on who, what and, where the users are. Some of the information retrieval researchers are interested in identifying the gender, age group, and the educational level of the users. The objective of this work is to identify the gender in the Arabic posts in the social media. Most of the works related to gender classification has been for English based content in the social media. Work for other languages, such as Arabic, is almost next to none. Typically people express themselves in the social media using colloquial, so this study is geared towards the identification of genders using the Saudi dialect of the Arabic language. To solve the gender identification problem the authors, a novel method called k-Top Vector (k-TV), which is based on the k-top words based on the words occurrences and the frequency of the stems, was introduced. Part of this work required compiling a dataset of Saudi dialect words. For this, a well-known widely used social site was relied on. To test the system, we compiled 1200 samples equally split between both genders. The authors trained Support Vector Machine (SVM) and k-NN classifiers using different number of samples for training and testing. SVM did a better job and achieved an accuracy of 95% for gender classification.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 20 ◽  
Author(s):  
Hongwei Zhang ◽  
Steven Wang ◽  
Tao Huang

Aims: We would like to identify the biomarkers for chronic hypersensitivity pneumonitis (CHP) and facilitate the precise gene therapy of CHP. Background: Chronic hypersensitivity pneumonitis (CHP) is an interstitial lung disease caused by hypersensitive reactions to inhaled antigens. Clinically, the tasks of differentiating between CHP and other interstitial lungs diseases, especially idiopathic pulmonary fibrosis (IPF), were challenging. Objective: In this study, we analyzed the public available gene expression profile of 82 CHP patients, 103 IPF patients, and 103 control samples to identify the CHP biomarkers. Method: The CHP biomarkers were selected with advanced feature selection methods: Monte Carlo Feature Selection (MCFS) and Incremental Feature Selection (IFS). A Support Vector Machine (SVM) classifier was built. Then, we analyzed these CHP biomarkers through functional enrichment analysis and differential co-expression analysis. Result: There were 674 identified CHP biomarkers. The co-expression network of these biomarkers in CHP included more negative regulations and the network structure of CHP was quite different from the network of IPF and control. Conclusion: The SVM classifier may serve as an important clinical tool to address the challenging task of differentiating between CHP and IPF. Many of the biomarker genes on the differential co-expression network showed great promise in revealing the underlying mechanisms of CHP.


Author(s):  
Amjad Rehman Khan ◽  
Fatemeh Doosti ◽  
Mohsen Karimi ◽  
Majid Harouni ◽  
Usman Tariq ◽  
...  

Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 739
Author(s):  
Alessandro Bevilacqua ◽  
Margherita Mottola ◽  
Fabio Ferroni ◽  
Alice Rossi ◽  
Giampaolo Gavelli ◽  
...  

Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWIb2000) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January–November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWIb2000 and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWIb2000 and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (ρ < 0.15) selected through Wilcoxon rank-sum test (p ≤ 0.05) with Holm–Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63–0.96), the DWIb2000 model reached AUC = 0.84 (95% CI, 0.63–0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWIb2000 in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2021 ◽  
Vol 11 (5) ◽  
pp. 1990
Author(s):  
Vinod Devaraj ◽  
Philipp Aichinger

The characterization of voice quality is important for the diagnosis of a voice disorder. Vocal fry is a voice quality which is traditionally characterized by a low frequency and a long closed phase of the glottis. However, we also observed amplitude modulated vocal fry glottal area waveforms (GAWs) without long closed phases (positive group) which we modelled using an analysis-by-synthesis approach. Natural and synthetic GAWs are modelled. The negative group consists of euphonic, i.e., normophonic GAWs. The analysis-by-synthesis approach fits two modelled GAWs for each of the input GAW. One modelled GAW is modulated to replicate the amplitude and frequency modulations of the input GAW and the other modelled GAW is unmodulated. The modelling errors of the two modelled GAWs are determined to classify the GAWs into the positive and the negative groups using a simple support vector machine (SVM) classifier with a linear kernel. The modelling errors of all vocal fry GAWs obtained using the modulating model are smaller than the modelling errors obtained using the unmodulated model. Using the two modelling errors as predictors for classification, no false positives or false negatives are obtained. To further distinguish the subtypes of amplitude modulated vocal fry GAWs, the entropy of the modulator’s power spectral density and the modulator-to-carrier frequency ratio are obtained.


Sign in / Sign up

Export Citation Format

Share Document