scholarly journals Study of the object of the natural-technical system and determination of the static characteristics of ventilation

2018 ◽  
Vol 226 ◽  
pp. 04020
Author(s):  
Igor I. Bosikov ◽  
Roman V. Klyuev ◽  
Boris V. Dzeranov ◽  
Marat V. Tekiev

The article describes the analysis of the operation of existing production facilities for the extraction and processing of deposits. The study of the effective functioning of the natural-technical system in the extraction of a useful component of deposits is an extremely urgent and promising task. The purpose of the research is to study the object of the natural-technical system and determine the type of static ventilation characteristics. The tasks will be solved on the basis of a comprehensive study of the object of the natural-technical system. Experimental data necessary for constructing static characteristics associated with conducting a special experiment on the production site that violates the normal mode of ventilation is obtained. The research and development of a method for determining the static characteristics of ventilation objects, according to normal operation, which are obtained without interrupting the technological process of extracting the useful component.

2020 ◽  
Vol 17 (1) ◽  
pp. 47-56
Author(s):  
Shun Liu ◽  
Xun Wang ◽  
Kaiping Zou ◽  
Wei Liu ◽  
Cunyu Li ◽  
...  

Background: Zishen Tongguan (ZSTG) capsules were prepared at the Affiliated Hospital of Nanjing University of Chinese Medicine and have been proven to be clinically effective for treating pyelonephritis and benign prostatic hyperplasia. However, the quality standards are not ideal; a comprehensive study of the “quality markers” (Q-markers), the chemicals inherent in traditional Chinese medicine and its preparations, has not been carried out. Experimental Methods: In this paper, a sensitive and specific ultra-high-performance liquid chromatographictandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of eight potential Q-markers of ZSTG, including timosaponin A3, berberine, jatrorrhizine, phellodendrine, palmatine, mangiferin, neomangiferin, and timosaponin BII. A Kromasil 100-3.5 C18 column was used with a mobile phase of 0.2% formic acid with acetonitrile, and gradient elution at a flow rate of 0.2 mL/min was achieved in 13 minutes and used for separation. Detection was performed in positive/negative mode with multiple reaction monitoring (MRM). Results: The analytical method was validated in terms of the sensitivity, linearity, accuracy, precision, repeatability, stability and recovery. The method established here was successfully applied to study the potential Q-markers in 8 batches of commercial samples, which demonstrated its use in improving the quality control of ZSTG. Conclusion: The developed method had high repeatability and accuracy and was suitable for the simultaneous analysis of multiple Q-markers, which may provide a new basis for the comprehensive assessment and overall quality control of ZSTG.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


2006 ◽  
Vol 62 (6) ◽  
pp. 1025-1030 ◽  
Author(s):  
Razvan Caracas ◽  
Renata M. Wentzcovitch

Density functional theory is used to determine the possible crystal structure of the CaSiO3 perovskites and their evolution under pressure. The ideal cubic perovskite is considered as a starting point for studying several possible lower-symmetry distorted structures. The theoretical lattice parameters and the atomic coordinates for all the structures are determined, and the results are discussed with respect to experimental data.


Author(s):  
Ahmet Selim Dalkiliç ◽  
Ali Celen ◽  
Mohamed M. Awad ◽  
Somchai Wongwises

Heat exchangers using in-tube condensation have great significance in the refrigeration, automotive and process industries. Effective heat exchangers have been rapidly developed due to the demand for more compact systems, higher energy efficiency, lower material costs and other economic incentives. Enhanced surfaces, displaced enhancement devices, swirl-flow devices and surface tension devices improve the heat transfer coefficients in these heat exchangers. This study is a critical review on the determination of the condensation heat transfer coefficient of pure refrigerants flowing in vertical and horizontal tubes. The authors’ previous publications on this issue, including the experimental, theoretical and numerical analyses are summarized here. The lengths of the vertical and horizontal test sections varied between 0.5 m and 4 m countercurrent flow double-tube heat exchangers with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The measured data are compared to theoretical and numerical predictions based on the solution of the artificial intelligence methods and CFD analyses for the condensation process in the smooth and enhanced tubes. The theoretical solutions are related to the design of double tube heat exchangers in refrigeration, air conditioning and heat pump applications. Detailed information on the in-tube condensation studies of heat transfer coefficient in the literature is given. A genetic algorithm (GA), various artificial neural network models (ANN) such as multilayer perceptron (MLP), radial basis networks (RBFN), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS), and various optimization techniques such as unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM), non-linear least squares error method (NLS), and Ansys CFD program are used in the numerical solutions. It is shown that the convective heat transfer coefficient of laminar and turbulent condensing film flows can be predicted by means of theoretical and numerical analyses reasonably well if there is a sufficient amount of reliable experimental data. Regression analysis gave convincing correlations, and the most suitable coefficients of the proposed correlations are depicted as compatible with the large number of experimental data by means of the computational numerical methods.


Author(s):  
Cristian F. Costa ◽  
Paulo C. Corrêa ◽  
Jaime D. B. Vanegas ◽  
Fernanda M. Baptestini ◽  
Renata C. Campos ◽  
...  

ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.


Sign in / Sign up

Export Citation Format

Share Document