scholarly journals Stress partitioning in a near-β Titanium alloy induced by elastic and plastic phase anisotropies: experimental and modeling

2020 ◽  
Vol 321 ◽  
pp. 11090
Author(s):  
Ravi raj purohit PURUSHOTTAM RAJ PUROHIT ◽  
Safaa LHADI ◽  
Nathalie GEY ◽  
Olivier CASTELNAU ◽  
Thiebaud RICHETON ◽  
...  

The load transfer induced by the elastic and plastic phase anisotropies of a Ti–10V–2Fe–3Al titanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along the elongation direction, at a strain rate of 2 x 10-3 s-1 give a yield stress of 830 MPa with 13% ductility. Simulations based on an advanced two-phase polycrystalline elasto-viscoplastic self-consistent (EVPSC) model predict that the β phase first plastifies with a sequential onset of plasticity starting from <110> oriented β grains, then <111> and finally <100> oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elastic up to high stresses (~940 MPa). However, additional simulations considering exclusively β grains of specific orientation show that the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in <001> β grains, which plastify the latest, the model predicts the onset of plasticity in favorably orientated α nodules. Moreover, the orientation spread within the β grains can modify the average plastic behavior of α phase. In future, these results will be compared to data obtained from in-situ High Energy XRD and SEM/EBSD experiments.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1630
Author(s):  
Ke Wang ◽  
Yongqing Zhao ◽  
Weiju Jia ◽  
Silan Li ◽  
Chengliang Mao

Isothermal compressions of as-cast near-α Ti90 titanium alloy were carried out on a Gleeble-3800 simulator in the temperature range of 860–1040 °C and strain rates of 0.001–10 s−1. The deformation behavior of the alloy was characterized based on the analyses of flow curves, the constructions of Arrhenius constitutive equations and the processing map. The microstructure evolution of the alloy was analyzed using the optical microscopic (OM), transmission electron microscope (TEM), and electron backscatter diffraction (EBSD) techniques. The results show that the kinking and dynamic globularization of α lamellae is the dominant mechanism of flow softening in the α + β two-phase region, while the dynamic recovery (DRV) of β phase is the main softening mechanism in the β single-phase region. The dynamic globularization of α lamellae is mainly caused by the wedging of β phase into α laths and the shearing of α laths due to imposed shear strain. The activation of prismatic and pyramidal slip is found to be easier than that of basic slip during the deformation in the α + β two-phase region. In addition, the Schmid factor of equiaxial α is different from that of lamellar α, which also varies with the angle between its geometric orientation and compression direction (CD). Based on the processing map, the low η region within the temperature range of 860–918 °C with a strain rate range of 0.318–10 s−1 should be avoided to prevent the occurrence of deformation instability.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Han ◽  
Pu Huang ◽  
Liang Li ◽  
Fakun Wang ◽  
Peng Luo ◽  
...  

Abstract Two-dimensional molecular crystals, consisting of zero-dimensional molecules, are very appealing due to their novel physical properties. However, they are mostly limited to organic molecules. The synthesis of inorganic version of two-dimensional molecular crystals is still a challenge due to the difficulties in controlling the crystal phase and growth plane. Here, we design a passivator-assisted vapor deposition method for the growth of two-dimensional Sb2O3 inorganic molecular crystals as thin as monolayer. The passivator can prevent the heterophase nucleation and suppress the growth of low-energy planes, and enable the molecule-by-molecule lateral growth along high-energy planes. Using Raman spectroscopy and in situ transmission electron microscopy, we show that the insulating α-phase of Sb2O3 flakes can be transformed into semiconducting β-phase under heat and electron-beam irradiation. Our findings can be extended to the controlled growth of other two-dimensional inorganic molecular crystals and open up opportunities for potential molecular electronic devices.


2010 ◽  
Vol 654-656 ◽  
pp. 456-459 ◽  
Author(s):  
Thomas Schmoelzer ◽  
Svea Mayer ◽  
Frank Haupt ◽  
Gerald A. Zickler ◽  
Christian Sailer ◽  
...  

Intermetallic TiAl alloys with a significant volume fraction of the body-centered cubic β-phase at elevated temperatures have proven to exhibit good processing characteristics during hot-working. Being a strong β stabilizer, Mo has gained importance as an alloying element for so-called β/γ-TiAl alloys. Unfortunately, the effect of Mo on the appearing phases and their temperature dependence is not well known. In this work, two sections of the Ti-Al-Mo ternary phase diagram derived from experimental data are shown. These diagrams are compared with the results of in-situ high-temperature diffraction experiments using high-energy synchrotron radiation.


2015 ◽  
Vol 830-831 ◽  
pp. 354-357
Author(s):  
S.V.S. Narayana Murty ◽  
Sushant Manwatkar ◽  
P. Ramesh Narayanan

High strength fasteners of Titanium alloy Ti-6Al-4V are widely used in both launch vehicle and satellite structures. Ti-6Al-4V fasteners having three different types of microstructures were analysed for mechanical properties to understand the role of two phase α+β or transformed β phase in the head region. Based on the microstructure-mechanical property correlations, it was concluded that the presence of transformed beta phase will not affect the strength properties, but will produce scatter in percentage elongation, percentage reduction in area and failure torque values. Therefore, it is recommended that the microstructure of aerospace titanium alloy Ti-6Al-4V fasteners should contain homogeneous two phase α+β throughout.


2020 ◽  
Vol 321 ◽  
pp. 03026
Author(s):  
K. Yamanaka ◽  
A. Kuroda ◽  
M. Ito ◽  
M. Mori ◽  
T. Shobu ◽  
...  

In this study, the tensile deformation behavior of an electron beam melted Ti−6Al−4V alloy was examined by in situ X-ray diffraction (XRD) line-profile analysis. The as-built Ti−6Al−4V alloy specimen showed a fine acicular microstructure that was produced through the decomposition of the α′-martensite during the post-melt exposure to high temperatures. Using high-energy synchrotron radiation, XRD line-profile analysis was successfully applied for examining the evolution of dislocation structures not only in the α-matrix but also in the nanosized, low-fraction β-phase precipitates located at the interfaces between the α-laths. The results indicated that the dislocation density was initially higher in the β-phase and an increased dislocation density with increasing applied tensile strain was quantitatively captured in each constitutive phase. It can be thus concluded that the EBM Ti−6Al−4V alloy undergoes a cooperative plastic deformation between the constituent phases in the duplex microstructure. These results also suggested that XRD line-profile analysis combined with highenergy synchrotron XRD measurements can be utilized as a powerful tool for characterizing duplex microstructures in titanium alloys.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Helmut Clemens ◽  
Thomas Schmoelzer ◽  
Martin Schloffer ◽  
Emanuel Schwaighofer ◽  
Svea Mayer ◽  
...  

ABSTRACTIn this paper, the physical metallurgy and properties of a novel family of high-strength γ-TiAl-based alloys is reviewed succinctly. These so-called TNM™ alloys contain Nb and Mo additions in the range of 3 - 7 atomic percent as well as small additions of B and C. For the definition of the alloy composition thermodynamic calculations using the CALPHAD method were conducted. The predicted phase transformation and ordering temperatures were verified by differential scanning calorimetry and in situ high-energy X-ray diffraction. TNM alloys solidify via the β-phase and exhibit an adjustable β-phase volume fraction at temperatures, where hot-working processes are performed. Due to the high volume fraction of β-phase these alloys can be processed isothermally as well as under near conventional conditions. In order to study the occurring deformation and recrystallization processes during hot-working, in situ diffraction experiments were conducted during compression tests at elevated temperatures. With subsequent heat-treatments a significant reduction of the β-phase is achieved. These outstanding features of TNM alloys distinguish them from other TiAl alloys which must exclusively be processed under isothermal conditions and/or which always exhibit a high fraction of β-phase at service temperature. After hot-working and multi-step heat-treatments, these alloys show yield strength levels > 800 MPa at room temperature and also good creep resistance at elevated temperatures.


1998 ◽  
Vol 524 ◽  
Author(s):  
D. D. Dominguez ◽  
P. L. Hagans ◽  
E. F. Skelton ◽  
S. B. Qadri ◽  
D. J. Nagel

ABSTRACTWith low energy x-rays, such as those from a Cu x-ray tube, only the outer few microns of a metallic sample can be probed. This low penetrating power prohibits structural studies from being carried out on the interior of an electrode in an electrochemical cell because of absorption by the cell material, electrodes and the electrolyte. The work described in this paper circumvents this problem by utilizing high energy, high brightness x-rays produced on the superconducting wiggler beam line, X-17C, at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The penetrating power of the higher energy x-rays allowed Pd diffraction spectra to be obtained in-situ on a 1 mm diameter Pd wire cathode during electrolysis of heavy water. Moreover, the beam (28 × 28 μm in cross-section) allowed diffraction spectra to be acquired as a function of distance across the sample. Spectra were recorded in 50 μm steps from the edge of the Pd wire to its core. This was done at 2 minute intervals as a function of electrolysis time. The α-β phase transition induced in the Pd while deuterium was electrochemically absorbed was observed by monitoring the Pd-(422) diffraction peaks. Results allowed the diffusion rate and the diffusivity of deuterium atoms in the Pd wire to be determined. Other features of the structural changes associated with the absorption of deuterium into Pd are reported.


2011 ◽  
Vol 287-290 ◽  
pp. 1492-1495 ◽  
Author(s):  
Hai Xia Wang ◽  
Ping Zhan Si ◽  
Wei Jiang ◽  
Jin Jun Liu ◽  
Jung Goo Lee ◽  
...  

Novel nano-composite powders composed of hard-magnetic Mn54Al46 and soft-magnetic α-Fe were prepared by high-energy ball milling. The effect of α-Fe and preparation conditions on the structure and magnetic properties of the composite powders has been investigated. The ε-MnAl transforms to γ-MnAl, τ-MnAl, and β-phase under ball milling and annealing. The saturation magnetization and coercivity of the two-phase samples decrease with increasing temperature for the τ-phase decomposes at elevated temperatures. With increasing iron content, the coercivity decrease first and then increase up to 0.33 T when the Fe content is 10 wt%. Further addition of the magnetically soft iron phase would result in a decrease of the coercivity.


Sign in / Sign up

Export Citation Format

Share Document