Evaluation of annealing treatment in a deformed Cu-12.8%Fe composite

2013 ◽  
Vol 110 (4) ◽  
pp. 289-296
Author(s):  
Engang Wang ◽  
Lei Qu ◽  
Xiaowei Zuo ◽  
Lin Zhang ◽  
Jicheng He
Keyword(s):  
Author(s):  
Ginam Kim ◽  
W. Marsillo ◽  
M. Libera

The fact that block copolymers can assume a range of morphologies depending upon such variables as relative block length and molecular weight is now well known. In the case of poly(styrene)[PS]-poly(butadiene)[PB]-poly(styrene) (SBS) triblock copolymer, the morphologies range from spheres (roughly ~20% minor component), to cylinders (roughly 20%~35% minor component), to lamellae (roughly equal component fractions) Most recently, there has been increasing interest in transformations between morphologies by thermal annealing. This paper describes initial results studying the effect of solvent evaporation rate and post-casting annealing treatment on the morphology of SBS thin films.TEM specimens were prepared by solution casting electron transparent films. 50 μl of 0.1 wt% SBS (30% styrene, Mw=14,000, Scientific Polymer Products, Inc.) dissolved in toluene was deposited on a polished NaCl single crystal substrate placed in a small dish. After solvent evaporation the film was cut into small squares, floated from the salt in water, and each square was collected on a Cu grid.


Author(s):  
C.K. Hou ◽  
C.T. Hu ◽  
Sanboh Lee

The fully processed low-carbon electrical steels are generally fabricated through vacuum degassing to reduce the carbon level and to avoid the need for any further decarburization annealing treatment. This investigation was conducted on eighteen heats of such steels with aluminum content ranging from 0.001% to 0.011% which was believed to come from the addition of ferroalloys.The sizes of all the observed grains are less than 24 μm, and gradually decrease as the content of aluminum is increased from 0.001% to 0.007%. For steels with residual aluminum greater than 0. 007%, the average grain size becomes constant and is about 8.8 μm as shown in Fig. 1. When the aluminum is increased, the observed grains are changed from the uniformly coarse and equiaxial shape to the fine size in the region near surfaces and the elongated shape in the central region. SEM and EDAX analysis of large spherical inclusions in the matrix indicate that silicate is the majority compound when the aluminum propotion is less than 0.003%, then the content of aluminum in compound inclusion increases with that in steel.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


Author(s):  
A. De Veirman ◽  
J. Van Landuyt ◽  
K.J. Reeson ◽  
R. Gwilliam ◽  
C. Jeynes ◽  
...  

In analogy to the formation of SIMOX (Separation by IMplanted OXygen) material which is presently the most promising silicon-on-insulator technology, high-dose ion implantation of cobalt in silicon is used to synthesise buried CoSi2 layers. So far, for high-dose ion implantation of Co in Si, only formation of CoSi2 is reported. In this paper it will be shown that CoSi inclusions occur when the stoichiometric Co concentration is exceeded at the peak of the Co distribution. 350 keV Co+ ions are implanted into (001) Si wafers to doses of 2, 4 and 7×l017 per cm2. During the implantation the wafer is kept at ≈ 550°C, using beam heating. The subsequent annealing treatment was performed in a conventional nitrogen flow furnace at 1000°C for 5 to 30 minutes (FA) or in a dual graphite strip annealer where isochronal 5s anneals at temperatures between 800°C and 1200°C (RTA) were performed. The implanted samples have been studied by means of Rutherford Backscattering Spectroscopy (RBS) and cross-section Transmission Electron Microscopy (XTEM).


2019 ◽  
Vol 33 (31) ◽  
pp. 1950384
Author(s):  
Di Lu ◽  
Yu-E Yang ◽  
Weichun Zhang ◽  
Caixia Wang ◽  
Jining Fang ◽  
...  

We have investigated Raman spectra of the G and 2D lines of a single-layer graphene (SLG) with metallic contacts. The shift of the G and 2D lines is correlated to two different factors. Before performing annealing treatment or annealing under low temperature, the electron transfer on graphene surface is dominated by nonuniform strain effect. As the annealing treatment is enhanced, however, a suitable annealing treatment can eliminate the nonuniform strain effect where the relative work function (WF) between graphene and metal becomes a main factor to determine electronic transfer. Moreover, it is confirmed that the optimized annealing treatment can also decrease effectively the structural defect and induced disorder in graphene due to metallic contacts.


2017 ◽  
Vol 31 (4) ◽  
pp. 415-422
Author(s):  
Jian Tu ◽  
Kun-Feng Zhou ◽  
Zhi-Ming Zhou ◽  
Can Huang ◽  
Zhi-Gang Chen

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2231
Author(s):  
Alexandru Enesca ◽  
Luminita Isac

A dual S-scheme Cu2S_TiO2_WO3 heterostructure was constructed by sol–gel method using a two-step procedure. Due to the synthesis parameters and annealing treatment the heterostructure is characterized by sulfur deficit and oxygen excess allowing the passivation of oxygen vacancies. The photocatalytic activity was evaluated under UV and UV–Vis irradiation scenarios using S-MCh as reference pollutant. The heterostructure is composed on orthorhombic Cu2S, anatase TiO2 and monoclinic WO3 with crystallite sizes varying from 65.2 Å for Cu2S to 97.1 Å for WO3. The heterostructure exhibit a dense morphology with pellets and particle-like morphology closely combined in a relatively compact assembly. The surface elemental composition indicate that the heterostructure maintain a similar atomic ratio as established during the synthesis with a slight sulfur deficit due to the annealing treatments. The results indicate that the three-component heterostructure have higher photocatalytic efficiency (61%) comparing with two-component heterostructure or bare components. Moreover, Cu2S_TiO2_WO3 exhibit a superior constant rate (0.114 s−1) due to the high concentration of photogenerated charge carriers, efficient charge separation and migration.


Sign in / Sign up

Export Citation Format

Share Document