Influence of Fe-rich particles on microstructure evolution, texture and mechanical properties of Al–Mg–Si–Cu alloys

2020 ◽  
Vol 117 (5) ◽  
pp. 508
Author(s):  
Libo Yu ◽  
Lin Chen ◽  
Hebin Wang ◽  
Xiaofeng Wang ◽  
Wenfei Peng ◽  
...  

The influence of Fe-rich particles on the microstructure evolution, texture and mechanical properties of Al–Mg–Si–Cu alloys was investigated by means of microstructure, texture and mechanical property analysis in the present study. The results show that Fe-rich particles have a significant influence on the microstructure evolution, texture, and final mechanical properties. Although both alloy sheets with different numbers of Fe-rich particles possess the similar microstructure including grain structure and fine particle distribution before solution treatment, the alloy sheet with a large number of Fe-rich particles possesses finer equiaxed grain structure in comparison with the alloy sheet with a medium number of Fe-rich particles after solution treatment. The solution treated alloy sheet with a medium number of Fe-rich particles is mainly comprised of CubeND {001}<310> orientation, while the solution treated alloy sheet with a large number of Fe-rich particles possesses weaker texture consisting of CubeND and Goss {110}<001> orientations. Fe-rich particles are beneficial to improve yield strength, ultimate tensile strength and r value, whereas reduce n and Δr values. Finally, the effect of Fe-rich particles on recrystallization microstructure and texture was analyzed.

2021 ◽  
Vol 118 (2) ◽  
pp. 211
Author(s):  
Xiaofeng Wang ◽  
Hong Liu ◽  
Xiaobo Tang

This paper investigates a comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys through microstructure, texture characterization and tensile test. The results show that they exhibit different microstructure, texture and mechanical properties. In comparison with the alloy sheet with a low weight ratio of Mg to Si (Si-excess), the alloy sheet with a higher weight ratio of Mg to Si (Mg-excess) and additional Zn possesses the finer as-casting and solution treated equiaxed grain structure, less particles with larger size before solution treatment, weaker recrystallization texture mainly including Cube {001}<100> orientation and weaker mechanical properties. The low weight ratio of Mg to Si corresponds to slightly higher yield strength and ultimate tensile strength, but much higher plastic strain ration r, work hardening exponent n values and elongation. Interestingly, Portevin-Le Chatelier (PLC) effect is very prevailed in the alloy sheet with a higher weight ratio of Mg to Si and additional Zn, which is responsible for the low elongation and r value. The alloy containing a low weight ratio of Mg to Si may be beneficial to improve comprehensive mechanical property.


2015 ◽  
Vol 816 ◽  
pp. 446-450
Author(s):  
Xiao Bing Zheng ◽  
Wen Bo Du ◽  
Ke Liu ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The microstructure evolution of the Mg-3Zn-0.5Er-0.5Al (mass fraction, %) alloy under the different condition was investigated. The results showed that as-cast Mg-3Zn-0.5Er-0.5Al alloy mainly consisted of primary large irregular Mg4Zn7 phase and needlelike (Mg, Zn, Er, Al) quaternary phase. Mg4Zn7 phase almost dissolved into the matrix after solid solution treatment at 400 oC for 10 h, while the (Mg, Zn, Er, Al) quaternary phase still existed. The solution treated alloy was extruded at 250 °C. The ultimate tensile strength of the as-extruded alloy was approximately 268 MPa and the YTS was approximately 163 MPa companying with an elongation of 28%. The tensile strength of the as-extruded alloy improved obviously, which was mainly attributed to the grain refinement.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2007 ◽  
Vol 567-568 ◽  
pp. 361-364 ◽  
Author(s):  
Suk Bong Kang ◽  
Jae Hyung Cho ◽  
Hyoung Wook Kim ◽  
Y.M Jin

The sheet of ZK60 alloy with a thickness of 1mm was prepared from a casting ingot followed by homogenization and warm-rolling. Variations in microstructure and mechanical properties of ZK60 alloy sheets were investigated during T6 treatment. Especially artificial aging after solution heat treatment affected both precipitates distribution and mechanical properties with aging treatment. Variations of mechanical properties were related to precipitates, i.e. rod-shaped ( 1 β ′ ) or disc shaped ( 2 β ′ ) particles. Around the peak of hardness values, regularly distributed rod-shaped ( 1 β ′ ) precipitates were found. The rod-shaped ( 1 β ′ ) precipitates were oriented with a growth direction of [0001]. When over-aged, rod-shaped ( 1 β ′ ) precipitates were expected to decrease and the density of disc-shaped ( 2 β ′ ) precipitates to change. The rod-shaped ( 1 β ′ ) precipitates mainly consist of {Mg, Zn}, while disc-shaped ( 2 β ′ ) precipitates, {Mg, Zn, Zr} or {Mg, Zn}. In this study the optimum T6 treatment was determined as solution treatment at 430 °C for 6 hours and subsequently aging treatment at 175 °C for 18 hours. At this T6 condition the tensile strength, yield strength and elongation are 321MPa, 280MPa and 16%, respectively.


2011 ◽  
Vol 686 ◽  
pp. 90-95 ◽  
Author(s):  
Bin Jiang ◽  
Qing Shan Yang ◽  
Liang Gao ◽  
Fu Sheng Pan

The microstructure evolution of the extruded Mg-9Li-1Al (LA91) during rolling was investigated taking account of effects of different routes including hot rolling, and cross rolling. The rolling parameters were suggested by thermal compression testing. As a result, the suggested rolling parameters were 250°C and 1.0s-1. Transverse hot rolling would bring a finer microstructure to the as-rolled LA91 sheet. With the enhancement of the rolling reduction during unidirectional hot rolling the α-Mg phase became granular or short rod-like from long strip-like. Transverse + longitudinal hot rolling would improve the microstructure and was a better cross rolling route by which the strength and the elongation of the cross rolled LA91 sheet reached 243MPa and 20% respectively. The over-aging existed in the cross rolled LA91 sheets.


2009 ◽  
Vol 618-619 ◽  
pp. 303-306 ◽  
Author(s):  
Zhen Tao Yu ◽  
Gui Wang ◽  
Xi Qun Ma ◽  
Matthew S. Dargusch ◽  
Jian Ye Han ◽  
...  

The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium alloys have been investigated. Near β titanium alloys consisting of non-toxic alloying elements Mo, Nb, Zr, Sn possess a low Young’s modulus, and moderate strength and plasticity. As the hot rolled TLM alloy (Ti-25Nb-3Zr-3Mo-2Sn) possesses high strength and low Young’s modulus a detailed investigation is performed for this alloy. Solution treatment of the hot rolled TLM alloy reduces strength and increases ductility without affecting the Young’s modulus. Ageing of the solution treated TLM alloy reduces elongation and increases the Young’s modulus with little change in strength. Both solution treated and aged conditions show features of two stage yielding associated with a strain induced martensitic transformation.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5037
Author(s):  
Tao Ma ◽  
Sicong Zhao ◽  
Liping Wang ◽  
Zhiwei Wang ◽  
Erjun Guo ◽  
...  

The effect of solution treatment time on the microstructure and mechanical properties of aged the Mg-2.0Nd-2.0Sm-0.4Zn-0.4Zr (wt.%) alloy were investigated to give full play to the performance of the alloy. As the solution treatment time increased from 2 h to 12 h at 788 K, the grain size of the solution-treated alloy significantly increased, and the network-like β-Mg12(Nd, Sm, Zn) phase gradually dissolved into the α-Mg matrix. It should be noted that no obvious residual β phase can be observed when the solution treatment time was more than 8 h. After the solution-treated alloy was further aged at 473 K for 18 h, a large number of nanoscale precipitates were observed in the α-Mg matrix. The solution treatment time was 2 h, the α-Mg matrix mainly consisted of spherical-shaped and basal plate-shaped precipitates. Upon the increase of solution treatment time to 8 h, the key strengthening phases transformed from spherical-shaped precipitates and basal plate-shaped precipitates to prismatic plate-shaped β′ precipitates. The orientation relationship between β′ precipitates and α-Mg matrix was (1¯10)β′ // (11¯00)α and [112]β′ // the [224¯3]α. Further increasing of solution treatment time from 8 h to 12 h, the key strengthening phases mainly were still β′ precipitates. The solution treatment of aged alloy was carried out at 788 K for 8 h, which achieved optimal ultimate tensile strength (UTS) of 261 ± 4.1 MPa, yield strength (YS) of 154 ± 1.5 MPa, and elongation of 5.8 ± 0.1%, respectively.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1152 ◽  
Author(s):  
Xiaofei Sheng ◽  
Kai Li ◽  
Wenke Wu ◽  
Yong Yang ◽  
Yu Liu ◽  
...  

The 6005A-T6 alloy had been widely applied in rail transmit industry due to its combination properties of moderate strength, superior resistance to corrosion, and excellent extrusion plasticity. However, few reports were related to the 6005A-T4 alloy in spite of it also presenting considerable properties. In this work, we introduced the FSW method to investigate the weldability and mechanical properties of a thin plate aluminum 6005A-T4 to evaluate its potential application. Fully recrystallized microstructure was obtained in the nugget zone, characterized by equiaxed grain with a size of 2.2 μm under current welding parameters. The tensile strength can reach as high as 174 ± 2 MPa with the absence of β phase, which is equivalent to 83.8% of that of base metal. The dissolution of β phase will dramatically reduce the micro-indentation hardness down to as low as 58 HV0.2 and the fine grain, for example 2 μm in this work, will reversely raise this value up to 64 HV0.2. Our investigation provides some perspectives to understand weldability, mechanical properties of the 6005A-T4 alloy, and develop its further applications in the related field.


Sign in / Sign up

Export Citation Format

Share Document