scholarly journals Characterization of two Moroccan watermelon seeds oil varieties by three different extraction methods

OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 13
Author(s):  
Ihssane Ouassor ◽  
Younes Aqil ◽  
Walid Belmaghraoui ◽  
Souad El Hajjaji

The purpose of this study is to assess and evaluate the physicochemical properties of the seed oils of two Moroccan varieties of watermelon “Citrullus lanatus” extracted by three different techniques, a mechanical process using cold press, and two chemical processes using a Soxhlet apparatus and a sonotrode ultrasound assisted extraction (UAE) using n-hexane. The total phenolic compounds (TPC) and antioxidant properties against the DPPH radicals (2,2-diphenyl-1-picrylhydrazyl) were also studied. The seed oils of both varieties of watermelon exhibited high concentrations of unsaturated fatty acids with the predominance of linoleic and oleic fatty acids. The primary sterol was β-sitosterol, and high levels of total tocopherols were observed. Ɣ-tocopherol was the predominant tocopherol in all tested oils. The Citrullus lanatus var. lanatus variety seeds oil exhibited the highest TPC value (89.5 ± 0.06 mg EGA/100 g; EGA: gallic acid equivalent), with 82.4 ± 0.03% DPPH free radical inhibition efficiency. Nevertheless, all tested seeds oils showed a significant amount of total phenolic compounds and a good inhibition against DPPH radicals ranging from 51.1 ± 0.1% to 84.8 ± 0.04%. In addition, the influence of the ultrasonic extraction parameters was studied using two different solvents (n-hexane and the methanol-chloroform mixture), with different particle sizes (500–300 µm), duration (10 and 20 minutes), cycle (1–0.5), amplitude (80–100%) and solvent/seed ratios (1:5 and 1:10), and the seed roasting parameter was also studied. The oil yield was mainly affected by the extraction solvent, then the solvent/seed ratio and the duration, respectively.

Author(s):  
L. P. Nilova ◽  
S. M. Malyutenkova

The results of studies of the biochemical composition and antioxidant properties of nuts sold in the consumer market of St. Petersburg were presented in the work. The objects of research were kernels of nuts: sweet almonds, hazelnuts, cashews, walnuts. Total Soxhlet lipids, fatty acid composition, vitamin E, fractional composition of tocopherols and phytosterols, total phenolic compounds and flavonoids, antioxidant activity by FRAP with ferric chloride, o-phenanthroline and Triton X 100 were determined in nuts. Nuts varied in lipid content (42.6–65.4%) with a predominance of unsaturated fatty acids from 80.4 to 92.4 relative%. Oleic acid prevailed in the fatty acids of almonds, hazelnuts and cashews, while linoleic acid prevailed in walnuts. Walnuts contained the highest amount of polyunsaturated fatty acids. The antioxidant properties of nuts were formed by a complex of water and fat-soluble antioxidants. Fat-soluble antioxidants included vitamin E with a predominance of ?-tocopherol in the kernels of sweet almonds and hazelnuts, ?-tocopherol - in walnuts and cashews. Only sweet almond kernels contained all the tocopherol fractions. ?- and ?-tocopherols were absent in hazelnut lipids, while ?-tocopherols were absent in cashews and walnuts. ?-sitosterol, campesterol and stigmasterol with a predominance of ?-sitosterol were identified in the composition of phytosterols in all nut kernels. Water-soluble antioxidants are mainly represented by phenolic compounds, the amount of which varies widely depending on the type of nuts: cashews


2012 ◽  
Vol 32 (2) ◽  
pp. 234-238 ◽  
Author(s):  
Marli da Silva Santos ◽  
Obdulio Gomes Miguel ◽  
Carmen Lúcia Oliveira Petkowicz ◽  
Lys Mary Bileski Cândido

This study aimed to evaluate the antioxidant potential and fatty acid profile of gabiroba (Campomanesia xanthocarpa Berg) seeds. In order to obtain the extract, the seeds were dried, crushed, and subjected to sequential extraction by maceration and percolation in a modified soxhlet extractor using solvent polarity gradient composed of hexane, chloroform, ethyl acetate, and alcohol, respectively. The extraction time was six hours. The ethanol extract showed the highest antioxidant potential, given by the EC50 value and the amount of total phenolic compounds. High amounts of unsaturated fatty acids were found in the oil studied, especially the oleic acid.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 326 ◽  
Author(s):  
María José Aliaño-González ◽  
Estrella Espada-Bellido ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
...  

Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was used: Methanol-water (25%–75%) for solvent composition, temperatures between 10 and 70 °C, amplitude in the range between 30% and 70% of the maximum amplitude −200 W), extraction solvent pH (2–7), the ratio for sample-solvent (0.5 g:10 mL–0.5 g:20 mL), and cycle between 0.2 and 0.7 s. The extraction kinetics were studied using different periods between 5 and 30 min. TA and TPC were analyzed by UHPLC and the Folin–Ciocalteu method, respectively. Optimized conditions for TA were: 51% MeOH in water, 31 °C temperature, pH 6.38, cycle 0.7 s, 65% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Optimized conditions for the TPC were: 49% MeOH in water, 41 °C temperature, pH 6.98, cycle 0.2 s, 30% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Both methods presented a relative standard deviation below 5% in the precision study. The suitability of the methods was tested in real samples. It was confirmed that these methods are feasible for the extraction of the studied bioactive compounds from different açai matrices.


2015 ◽  
Vol 29 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Jana Šic Žlabur ◽  
Sandra Voća ◽  
Nadica Dobričević ◽  
Mladen Brnčić ◽  
Filip Dujmić ◽  
...  

Abstract The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.


2018 ◽  
Vol 68 (4) ◽  
pp. 225 ◽  
Author(s):  
A. Rękas ◽  
M. Wroniak ◽  
A. Siger ◽  
I. Ścibisz

The influence of a microwave (MV) pre-treatment (3, 6, 9 min, 800W) on the physicochemical properties of high-oleic rapeseed oil prepared from intact (HORO) and de-hulled seeds (DHORO) was investigated in this study. A control DHORO contained higher levels of total tocopherols and carotenoids, while higher concentrations of total phenolic compounds and chlorophylls were detected in the HORO. The MV pre-treatment caused a decrease in the unsaturated fatty acids content that was more evident for the DHOROs. The microwaving time significantly affected phytochemical contents and the color of both types of oils. A vast increase in canolol concentration was noticeable following 9 min of microwaving, which increased 506- and 155-fold in the HORO and DHORO, respectively. At the same time, the antioxidant capacity of oil produced from MV pre-treated seeds for 9 min was nearly 4 times higher than that of the control oil for both types of oils


2021 ◽  
Vol 37 ◽  
pp. e37053
Author(s):  
Silvani Verruck ◽  
Anildo Cunha Junior ◽  
Marcelo Maraschin ◽  
Nei Fronza ◽  
Jean Carlos Budke ◽  
...  

Campomanesia xanthocarpa var. littoralis, Campomanesia xanthocarpa (Berg), and Campomanesia eugenioides are native fruit plants found in Brazil. Due to the scarce number of controlled scientific studies comparing different native Campomanesia species, this study sought to determine their bioactive compounds and antioxidant properties. C. eugenioides proved to be a rich source of total phenolic compounds, also showing the best antioxidant capacity by the ABTS, DPPH and molybdenum reduction power methods. On the other hand, C. xanthocarpa var. littoralis showed the best results for total flavonoids content, and Iron(II) chelation power. The phenolic compounds contents present in C. eugenioides could be responsible for the best antioxidant activity. This study provides key scientific data regarding the use of valuable fruits from different edible Campomanesia species to produce bioactive ingredients, as well as natural preservatives for food products. Thus, our results contribute to the discovery of the potential application of these native Campomanesia Brazilian fruits, as a natural product with functional and antioxidant properties.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 49
Author(s):  
María del Carmen Razola-Díaz ◽  
Eduardo Jesús Guerra-Hernández ◽  
Celia Rodríguez-Pérez ◽  
Ana María Gómez-Caravaca ◽  
Belén García-Villanova ◽  
...  

Orange peel (OP) is the main by-product from orange juice industry. OP is a known source of bioactive compounds and is widely studied for its antioxidant, anti-inflammatory, anti-cancer, anti-rheumatic, anti-diabetic and cardioprotective activities. Thus, this research focuses on the establishments of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode; objective framed in the European SHEALTHY (non-thermal physical technologies to preserve healthiness of fresh and minimally processed fruit and vegetables) project. For this purpose, a Box Behnken design of 27 experiments was carried out with 4 independent factors (ratio ethanol/water, time (min), amplitude (%) and pulse (%)). Quantitative analyses of total phenolic compounds (TPC) were performed by Folin-Ciocalteu method and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology. The optimal extracts were characterized by HPLC coupled to mass spectrometer detectors. The highest phenolic content and antioxidant activity was obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W) and pulse 100%. The established method allows the extraction of 30.42 mg of gallic acid equivalents/g dry weight of total phenolic compounds from OP; this value suppose an increment up to 60% higher than conventional extraction.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jin Wang ◽  
Yong-Ming Zhao ◽  
Ya-Ting Tian ◽  
Chun-Lin Yan ◽  
Chun-Yan Guo

Ultrasound-assisted extraction (UAE) of phenolic compounds fromInula heleniumwas studied. Effects of ethanol concentration, ultrasonic time, solid-liquid ratio, and number of extractions were investigated. An orthogonal array was constructed to optimize UAE process. The optimized extraction conditions were as follows: ethanol concentration, 30%; solid-liquid ratio, 1 : 20; number of extractions, 2 times; extraction time, 30 min. Under the optimal conditions, the yield of total phenolic compounds and chlorogenic acid was6.13±0.58and1.32±0.17 mg/g, respectively. The results showed that high amounts of phenolic compounds can be extracted fromI. heleniumby ultrasound-assisted extraction technology.


1997 ◽  
Vol 77 (4) ◽  
pp. 535-541 ◽  
Author(s):  
S. D. Wanniarachchi ◽  
R. P. Voroney

Phytotoxicity of root, stem and leaf residues of canola (Brassica napus L.) was studied in a laboratory incubation for 8 wk. Bioassays were conducted with corn (Zea mays L.), barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) seeds to determine the relative toxicity of residue extracts. The release of volatile fatty acids (VFAs) and phenolic compounds (PCs) during incubation was studied to assess the role of these compounds in phytotoxicity. Canola residue extracts significantly inhibited (P ≤ 0.01) seedling growth (coleoptile and radicle lengths) of all crop species tested, with leaf and root residues causing the greatest and least toxicity, respectively. Incubation temperature had no impact on the toxicity of extracts. All residue extracts had VFAs prior to and during the incubation, with leaf residues producing relatively high levels of VFAs. The release of VFAs declined drastically during the incubation period. The release of PCs, measured as total phenolic compounds in extracts, was highest in leaf residues and remained higher than those of root or stem residues. Toxicity of residue extracts was not related to the amounts of VFAs and PCs found. However, toxicity appeared to be most related to the presence of total phenolic compounds in residue extracts. Key words: Phytotoxicity, canola residues, volatile fatty acids, phenolic compounds, residue decomposition


Sign in / Sign up

Export Citation Format

Share Document