Application of mobile X-ray barriers during angiography procedure: how much is it effective? A case study

2020 ◽  
Author(s):  
M. Saeedi-Moghadam ◽  
F. Zarei ◽  
B. Zeinali-Rafsanjani ◽  
A. Borhani-Haghighi ◽  
A. Azadbar

Introduction: This study intended to assess the effectiveness of application the mobile X-ray barriers (lead-wall) in reducing the radiation dose to interventionists during the brain angiography procedures. Moreover, the radiation dose of patients also evaluated to assess whether the application of lead-wall affects the patient’s dose or not? Material and method: Two interventionists took part in this study. Thermoluminescent dosimeters (TLD-100) were used to monitor the doses to interventionists. 1st-interventionist routinely used lead-wall and 2nd-interventionist didn’t use it. Demographic information of patients and radiation dose information was also recorded. Results: The results of measurements showed that the radiation dose of the 1st-interventionist was 83.57% lower than the 2nd-interventionist (p = 0.04). The amount of dose/min and DAP/min of the 1st-interventionist’s patients were 33.50% and 17.54% less than the 2nd-interventionist’s patients (p = 0.006) and (p = 0.0004). Discussion and conclusion: The results showed that application of lead wall can effectively reduce the occupational dose and it doesn’t lead to increase the patient’s dose.

2015 ◽  
Vol 1085 ◽  
pp. 478-481 ◽  
Author(s):  
Irina Miloichikova ◽  
Sergei Stuchebrov ◽  
Angelina Krasnykh ◽  
Alexander Wagner

In the article the radiation burden measurement technique of the X-ray source in the process of stabilization is described. The possibility of using this technique for the dose rate determination from the pulsed X-ray source is presented. The measurement technique approbation results at the pulsed X-ray source RAP-160-5 using thermoluminescent dosimeters DTL-02 are shown.


Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


2020 ◽  
Vol 4 (2) ◽  
pp. 722-729
Author(s):  
Usman Sani ◽  
Bashir Gide Muhammad ◽  
Dimas Skam Joseph ◽  
D. Z. Joseph

Poor implementation of quality assurance programs in the radiation industry has been a major setback in our locality. Several studies revealed that occupational workers are exposed to many potential hazards of ionizing radiation during radio-diagnostic procedures, yet radiation workers are often not monitored. This study aims to evaluate the occupational exposure of the radiation workers in Federal Medical Centre Katsina, and to compare the exposure with recommended occupational radiation dose limits. The quarterly readings of 20 thermo-luminescent dosimeters (TLDs') used by the radiation workers from January to December, 2019 were collected from the facility's radiation monitoring archive, and subsequently assessed and analyzed. The results indicate that the average annual equivalent dose per occupational worker range from 0.74 to 1.20 mSv and 1.28 to 2.21 mSv for skin surface and deep skin dose, measured at 10 mm and 0.07 mm tissue depth respectively. The occupational dose was within the recommended national and international limits of 5 mSv per annum or an average of 20 mSv in 5 years. Therefore, there was no significant radiation exposure to all the occupational workers in the study area. Though, the occupational radiation dose is within recommended limit, this does not eliminate stochastic effect of radiation. The study recommended that the occupational workers should adhere and strictly comply with the principles of radiation protection which includes distance, short exposure time, shielding and proper monitoring of dose limits. Furthermore, continuous training of the radiation workers is advised.


Author(s):  
Mensura Altumbabic ◽  
Marc R. Del Bigio ◽  
Scott Sutherland

ABSTRACT:Background:Transtentorial herniation of large cerebral fragments is a rare phenomenon.Method:Case StudyResults:Examination of the brain of a 35-year-old male showed massive intracerebral hemorrhage resulting in displacement of basal ganglia components into the fourth ventricle.Conclusions:Sufficiently rapid intracerebral bleeding can dissect fragments of cerebrum and displace them long distances across the tentorial opening.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ibrahim Shaik ◽  
S. K. Begum ◽  
P. V. Nagamani ◽  
Narayan Kayet

AbstractThe study demonstrates a methodology for mapping various hematite ore classes based on their reflectance and absorption spectra, using Hyperion satellite imagery. Substantial validation is carried out, using the spectral feature fitting technique, with the field spectra measured over the Bailadila hill range in Chhattisgarh State in India. The results of the study showed a good correlation between the concentration of iron oxide with the depth of the near-infrared absorption feature (R2 = 0.843) and the width of the near-infrared absorption feature (R2 = 0.812) through different empirical models, with a root-mean-square error (RMSE) between < 0.317 and < 0.409. The overall accuracy of the study is 88.2% with a Kappa coefficient value of 0.81. Geochemical analysis and X-ray fluorescence (XRF) of field ore samples are performed to ensure different classes of hematite ore minerals. Results showed a high content of Fe > 60 wt% in most of the hematite ore samples, except banded hematite quartzite (BHQ) (< 47 wt%).


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


Sign in / Sign up

Export Citation Format

Share Document