scholarly journals Medicinal Plants for the Treatment of Mental Diseases in Pregnancy: An In Vitro Safety Assessment

Planta Medica ◽  
2021 ◽  
Author(s):  
Deborah Spiess ◽  
Moritz Winker ◽  
Antoine Chauveau ◽  
Vanessa Fabienne Abegg ◽  
Olivier Potterat ◽  
...  

AbstractPregnancy is a critical period for medical care, during which the well-being of woman and fetus must be considered. This is particularly relevant in managing non-psychotic mental disorders since treatment with central nervous system-active drugs and untreated NMDs may have negative effects. Some well-known herbal preparations (phytopharmaceuticals), including St. Johnʼs wort, California poppy, valerian, lavender, and hops, possess antidepressant, sedative, anxiolytic, or antidepressant properties and could be used to treat mental diseases such as depression, restlessness, and anxiety in pregnancy. Our goal was to assess their safety in vitro, focusing on cytotoxicity, induction of apoptosis, genotoxicity, and effects on metabolic properties and differentiation in cells widely used as a placental cell model (BeWo b30 placenta choriocarcinoma cells). The lavender essential oil was inconspicuous in all experiments and showed no detrimental effects. At low-to-high concentrations, no extract markedly affected the chosen safety parameters. At an artificially high concentration of 100 µg/mL, extracts from St. Johnʼs wort, California poppy, valerian, and hops had minimal cytotoxic effects. None of the extracts resulted in genotoxic effects or altered glucose consumption or lactate production, nor did they induce or inhibit BeWo b30 cell differentiation. This study suggests that all tested preparations from St. Johnʼs wort, California poppy, valerian, lavender, and hops, in concentrations up to 30 µg/mL, do not possess any cytotoxic or genotoxic potential and do not compromise placental cell viability, metabolic activity, and differentiation. Empirical and clinical studies during pregnancy are needed to support these in vitro data.

2019 ◽  
Vol 244 (10) ◽  
pp. 846-849 ◽  
Author(s):  
Ninell P Mortensen ◽  
Maria M Caffaro ◽  
Rodney W Snyder ◽  
Yun L Yueh ◽  
Timothy R Fennell

Infants born with neonatal abstinence syndrome increased 5-fold between 2000 and 2012. Prenatal exposure to opioids has been linked to altered brain development, congenital heart defects, neural tube defects, and clubfoot. In the study presented here, placental transfer rate of six opioids; morphine, heroin, fentanyl, methadone, oxycodone, and naloxone was compared in vitro using a human trophoblast cell monolayer model, BeWo b30. The rate and concentration of opioid translocation were investigated individually and in mixtures. The opioid transfer was quantified at 5, 15, 30, 60, and 120 min, using target liquid chromatography-mass spectrometry. The transfer was lowest for heroin (<1.2% of administered dose at 120 min; the permeability across the cells [P]: 0.21 × 10−5 cm/s) and highest for oxycodone (13.2% of administered dose at 120 min; P: 2.46 × 10−5 cm/s). As oxycodone is a preferred drug for both short- and long-term pain treatment, more knowledge is needed to understand the potential adverse impact on fetal development, growth, and well-being. Opioid exposure is likely to happen as mixtures, and we therefore investigated the transfer of selected mixtures. Permeability was significantly decreased for heroin when administered together with fentanyl. This study demonstrates that the transfer rate between individual opioids varies significantly and that some mixtures may impact the transfer of some individual opioids like heroin. Impact statement Gaining knowledge about opioid exposure and placental transfer of opioids is an important part of providing clinicians with the necessary information for therapeutic strategies during pregnancy in the rising opioid epidemic. Opioids exposure often includes a mixture rather than an exposure to an individual opioid. We investigated placental trophoblast permeability to opioids in vitro for six individual opioids and selected mixtures. The rate and concentration of opioid translocation across placental trophoblast monolayer varied considerably between the six investigated opioids. Oxycodone had the highest level of translocation. We also found that the transfer of heroin decreased when administered together with fentanyl, while no change was observed for fentanyl transfer in the mixture. This suggests that opioid mixtures may decrease translocation of some opioids while others are unaffected.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Christian Linke ◽  
Markus Wösle ◽  
Anja Harder

Abstract Background Anticancer compound 3-bromopyruvate (3-BrPA) suppresses cancer cell growth via targeting glycolytic and mitochondrial metabolism. The malignant peripheral nerve sheath tumor (MPNST), a very aggressive, therapy resistant, and Neurofibromatosis type 1 associated neoplasia, shows a high metabolic activity and affected patients may therefore benefit from 3-BrPA treatment. To elucidate the specific mode of action, we used a controlled cell model overexpressing proteasome activator (PA) 28, subsequently leading to p53 inactivation and oncogenic transformation and therefore reproducing an important pathway in MPNST and overall tumor pathogenesis. Methods Viability of MPNST cell lines S462, NSF1, and T265 in response to increasing doses (0–120 μM) of 3-BrPA was analyzed by CellTiter-Blue® assay. Additionally, we investigated viability, reactive oxygen species (ROS) production (dihydroethidium assay), nicotinamide adenine dinucleotide dehydrogenase activity (NADH-TR assay) and lactate production (lactate assay) in mouse B8 fibroblasts overexpressing PA28 in response to 3-BrPA application. For all experiments normal and nutrient deficient conditions were tested. MPNST cell lines were furthermore characterized immunohistochemically for Ki67, p53, bcl2, bcl6, cyclin D1, and p21. Results MPNST significantly responded dose dependent to 3-BrPA application, whereby S462 cells were most responsive. Human control cells showed a reduced sensitivity. In PA28 overexpressing cancer cell model 3-BrPA application harmed mitochondrial NADH dehydrogenase activity mildly and significantly failed to inhibit lactate production. PA28 overexpression was associated with a functional glycolysis as well as a partial resistance to stress provoked by nutrient deprivation. 3-BrPA treatment was not associated with an increase of ROS. Starvation sensitized MPNST to treatment. Conclusions Aggressive MPNST cells are sensitive to 3-BrPA therapy in-vitro with and without starvation. In a PA28 overexpression cancer cell model leading to p53 inactivation, thereby reflecting a key molecular feature in human NF1 associated MPNST, known functions of 3-BrPA to block mitochondrial activity and glycolysis were reproduced, however oncogenic cells displayed a partial resistance. To conclude, 3-BrPA was sufficient to reduce NF1 associated MPNST viability potentially due inhibition of glycolysis which should lead to the initiation of further studies and promises a potential benefit for NF1 patients.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 1995-2005 ◽  
Author(s):  
Peter Spégel ◽  
Lotta E. Andersson ◽  
Petter Storm ◽  
Vladimir Sharoyko ◽  
Isabel Göhring ◽  
...  

Abstract As models for β-cell metabolism, rat islets are, to some extent, a, heterogeneous cell population stressed by the islet isolation procedure, whereas rat-derived clonal β-cells exhibit a tumor-like phenotype. To describe to what extent either of these models reflect normal cellular metabolism, we compared metabolite profiles and gene expression in rat islets and the INS-1 832/13 line, a widely used clonal β-cell model. We found that insulin secretion and metabolic regulation provoked by glucose were qualitatively similar in these β-cell models. However, rat islets exhibited a more pronounced glucose-provoked increase of glutamate, glycerol-3-phosphate, succinate, and lactate levels, whereas INS-1 832/13 cells showed a higher glucose-elicited increase in glucose-6-phosphate, alanine, isocitrate, and α-ketoglutarate levels. Glucose induced a decrease in levels of γ-aminobutyrate (GABA) and aspartate in rat islets and INS-1 832/13 cells, respectively. Genes with cellular functions related to proliferation and the cell cycle were more highly expressed in the INS-1 832/13 cells. Most metabolic pathways that were differentially expressed included GABA metabolism, in line with altered glucose responsiveness of GABA. Also, lactate dehydrogenase A, which is normally expressed at low levels in mature β-cells, was more abundant in rat islets than in INS-1 832/13 cells, confirming the finding of elevated glucose-provoked lactate production in the rat islets. Overall, our results suggest that metabolism in rat islets and INS-1 832/13 cells is qualitatively similar, albeit with quantitative differences. Differences may be accounted for by cellular heterogeneity of islets and proliferation of the INS-1 832/13 cells.


2020 ◽  
Vol 21 (17) ◽  
pp. 6149 ◽  
Author(s):  
Maria Maares ◽  
Claudia Keil ◽  
Sophia Straubing ◽  
Catherine Robbe-Masselot ◽  
Hajo Haase

Approximately 1 billion people worldwide suffer from zinc deficiency, with severe consequences for their well-being, such as critically impaired intestinal health. In addition to an extreme degeneration of the intestinal epithelium, the intestinal mucus is seriously disturbed in zinc-deficient (ZD) animals. The underlying cellular processes as well as the relevance of zinc for the mucin-producing goblet cells, however, remain unknown. To this end, this study examines the impact of zinc deficiency on the synthesis, production, and secretion of intestinal mucins as well as on the zinc homeostasis of goblet cells using the in vitro goblet cell model HT-29-MTX. Zinc deprivation reduced their cellular zinc content, changed expression of the intestinal zinc transporters ZIP-4, ZIP-5, and ZnT1 and increased their zinc absorption ability, outlining the regulatory mechanisms of zinc homeostasis in goblet cells. Synthesis and secretion of mucins were severely disturbed during zinc deficiency, affecting both MUC2 and MUC5AC mRNA expression with ongoing cell differentiation. A lack of zinc perturbed mucin synthesis predominantly on the post-translational level, as ZD cells produced shorter O-glycans and the main O-glycan pattern was shifted in favor of core-3-based mucins. The expression of glycosyltransferases that determine the formation of core 1-4 O-glycans was altered in zinc deficiency. In particular, B3GNT6 mRNA catalyzing core 3 formation was elevated and C2GNT1 and C2GNT3 elongating core 1 were downregulated in ZD cells. These novel insights into the molecular mechanisms impairing intestinal mucus stability during zinc deficiency demonstrate the essentiality of zinc for the formation and maintenance of this physical barrier.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


1966 ◽  
Vol 51 (2) ◽  
pp. 193-202
Author(s):  
J. A. Antonioli ◽  
A. Vannotti

ABSTRACT 1. The metabolism of suspensions of circulating leucocytes has been studied after intramuscular injection of a dose of 50 mg/kg of a corticosteroid (cortisone acetate). The suspensions were incubated under aerobic conditions in the presence of a glucose concentration of 5.6 mm. Glucose consumption, lactate production, and variations in intracellular glycogen concentration were measured. After the administration of the corticosteroid, the anabolic processes of granulocyte metabolism were reversibly stimulated. Glucose consumption and lactate production increased 12 hours after the injection, but tended to normalize after 24 hours. The glycogen content of the granulocytes was enhanced, and glycogen synthesis during the course of the incubation was greatly stimulated. The action of the administered corticosteroid is more prolonged in females than in males. The injection of the corticosteroid caused metabolic modifications which resemble in their modulations and in their chronological development those found in circulating granulocytes of guinea-pigs suffering from sterile peritonitis. These results suggest, therefore, that, in the case of acute inflammation, the glucocorticosteroids may play an important role in the regulation of the metabolism of the blood leucocytes.


1960 ◽  
Vol XXXV (IV) ◽  
pp. 575-584 ◽  
Author(s):  
C. Borel ◽  
J. Frei ◽  
A. Vannotti

ABSTRACT Enzymatic studies, on leucocytes of pregnant women, show an increase of the alkaline phosphatase activity and a decrease of the glucose consumption and lactate production, as well as of proteolysis. The oxygen consumption, with succinate as substrate, does not vary.


2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


Sign in / Sign up

Export Citation Format

Share Document